论文标题

正规化弗雷霍尔姆决定因素的产品公式

The product formula for regularized Fredholm determinants

论文作者

Britz, Thomas, Carey, Alan, Gesztesy, Fritz, Nichols, Roger, Sukochev, Fedor, Zanin, Dmitriy

论文摘要

对于跟踪类操作员,$ a,b \ in \ Mathcal {b} _1(\ Mathcal {h})$($ \ Mathcal {h} $是一个复杂的,可分开的希尔伯特空间),fredholm decdentints的产品公式为熟悉的form \ [{{{{{{{{{{{{ ((i _ {\ Mathcal {h}} - a)(i _ {\ Mathcal {h}} - b))= {\ det} _ {\ Mathcal {\ Mathcal {h}}}}}}}(i _ { (i _ {\ Mathcal {h}} -b)。 \]当跟踪类操作员被Hilbert-schmidt运算符替换时,$ a,b \ in \ Mathcal {b} _2(\ Mathcal {h})$和Fredholm necalant $ {\ det} _ {\ natercal { \ Mathcal {b} _1(\ Mathcal {h})$,由第二个正则化Fredholm确定$ {\ det} _ {\ Mathcal {h} ((i _ {\ Mathcal {h}} - a)\ exp(a))$,$ a \ in \ Mathcal {b} _2(\ Mathcal {h})$,必须由\ [{\ det} _ {\ Mathcal {\ Mathcal { ((i _ {\ Mathcal {h}} - a)(i _ {\ Mathcal {h}} - b))= {\ det} _ {\ Mathcal {h} (i _ {\ Mathcal {h}} - b)\ exp( - {\ rm tr}(ab))。 \]较高正规化的Fredholm决定因素$ {\ det} _ {\ Mathcal {h},k}(i _ {\ Mathcal {h}} - a)$,$ a \ in \ nathcal {b} _k(b) \ Mathbb {n} $,$ k \ geq 2 $似乎不容易访问,因此该注释旨在填补文献中的这一空白。

For trace class operators $A, B \in \mathcal{B}_1(\mathcal{H})$ ($\mathcal{H}$ a complex, separable Hilbert space), the product formula for Fredholm determinants holds in the familiar form \[ {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H}} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H}} (I_{\mathcal{H}} - B). \] When trace class operators are replaced by Hilbert--Schmidt operators $A, B \in \mathcal{B}_2(\mathcal{H})$ and the Fredholm determinant ${\det}_{\mathcal{H}}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_1(\mathcal{H})$, by the 2nd regularized Fredholm determinant ${\det}_{\mathcal{H},2}(I_{\mathcal{H}} - A) = {\det}_{\mathcal{H}} ((I_{\mathcal{H}} - A) \exp(A))$, $A \in \mathcal{B}_2(\mathcal{H})$, the product formula must be replaced by \[ {\det}_{\mathcal{H},2} ((I_{\mathcal{H}} - A) (I_{\mathcal{H}} - B)) = {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - A) {\det}_{\mathcal{H},2} (I_{\mathcal{H}} - B) \exp(- {\rm tr}(AB)). \] The product formula for the case of higher regularized Fredholm determinants ${\det}_{\mathcal{H},k}(I_{\mathcal{H}} - A)$, $A \in \mathcal{B}_k(\mathcal{H})$, $k \in \mathbb{N}$, $k \geq 2$, does not seem to be easily accessible and hence this note aims at filling this gap in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源