论文标题

连贯的单光子的明亮而快速的来源

A bright and fast source of coherent single photons

论文作者

Tomm, Natasha, Javadi, Alisa, Antoniadis, Nadia O., Najer, Daniel, Löbl, Matthias C., Korsch, Alexander R., Schott, Rüdiger, Valentin, Sascha R., Wieck, Andreas D., Ludwig, Arne, Warburton, Richard J.

论文摘要

单个光子源是与设备无关的量子通信,量子模拟,例如玻色子采样,基于线性光学的量子和基于测量的量子计算的关键启用技术。这些应用涉及许多光子,因此对单个光子创建的效率提出了严格的要求。效率的缩放是光子数量的指数函数。充分利用量子叠加的方案也敏感地取决于光子的连贯性,即它们的不可区分性。因此,维持长期光子的连贯性至关重要。在这里,我们报告了一个具有特别高系统效率的单个光子源:在最终光纤的输出时以57%的概率创建一个光子。光子的相干性很高,并且在由数千个光子组成的流中保持。重复率在GHz制度中。我们以已建立的半导体范式(例如微柱,光子晶体腔和波导)的破坏。取而代之的是,我们在开放的,可调的微腔中采用了封闭式的量子点。门控确保低噪声操作;可调性可以补偿缺乏量子点位置和发射频率的控制。输出非常匹配到单模光纤。如这里报道的那样,对最先进的效率的提高将导致20个光子的跑步时间大幅下降,这将导致跑步时间大幅下降。

A single photon source is a key enabling technology in device-independent quantum communication, quantum simulation for instance boson sampling, linear optics-based and measurement-based quantum computing. These applications involve many photons and therefore place stringent requirements on the efficiency of single photon creation. The scaling on efficiency is an exponential function of the number of photons. Schemes taking full advantage of quantum superpositions also depend sensitively on the coherence of the photons, i.e. their indistinguishability. It is therefore crucial to maintain the coherence over long strings of photons. Here, we report a single photon source with an especially high system efficiency: a photon is created on-demand at the output of the final optical fibre with a probability of 57%. The coherence of the photons is very high and is maintained over a stream consisting of thousands of photons; the repetition rate is in the GHz regime. We break with the established semiconductor paradigms, such as micropillars, photonic crystal cavities and waveguides. Instead, we employ gated quantum dots in an open, tunable microcavity. The gating ensures low-noise operation; the tunability compensates for the lack of control in quantum dot position and emission frequency; the output is very well-matched to a single-mode fibre. An increase in efficiency over the state-of-the-art by more than a factor of two, as reported here, will result in an enormous decrease in run-times, by a factor of $10^{7}$ for 20 photons.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源