论文标题

用于图形分类的多视图自适应图卷积

Multi-view adaptive graph convolutions for graph classification

论文作者

Adaloglou, Nikolas, Vretos, Nicholas, Daras, Petros

论文摘要

在本文中,提出了一种针对基于图的神经网络的新型多视图方法。针对非欧几里得歧管的背景,开发了经典深度学习方法的关键概念的系统和方法学适应。拟议工作的目的是介绍一个新颖的多视图卷积层,以及一个新的视图汇总层,可使用:a)根据特征距离度量学习的特征距离矩阵的多个可训练的图表,该图形矩阵的特征矩阵,使用可训练的距离矩阵,将图形图形用于图形,并将多个图形用于图形,该图形是多个图形的,该图形是多个图形的,该图形是多个图形的,该图形均为图形,该图形是多个图形的,该图形是多个图形,该图形是多个图形,从多个生成的视图中综合信息。上述图层用于端到端图神经网络体系结构中,以进行图形分类,并向其他最新方法显示竞争结果。

In this paper, a novel multi-view methodology for graph-based neural networks is proposed. A systematic and methodological adaptation of the key concepts of classical deep learning methods such as convolution, pooling and multi-view architectures is developed for the context of non-Euclidean manifolds. The aim of the proposed work is to present a novel multi-view graph convolution layer, as well as a new view pooling layer making use of: a) a new hybrid Laplacian that is adjusted based on feature distance metric learning, b) multiple trainable representations of a feature matrix of a graph, using trainable distance matrices, adapting the notion of views to graphs and c) a multi-view graph aggregation scheme called graph view pooling, in order to synthesise information from the multiple generated views. The aforementioned layers are used in an end-to-end graph neural network architecture for graph classification and show competitive results to other state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源