论文标题

通过转移学习扩大材料选择,用于选择高温氧化

Expanding materials selection via transfer learning for high-temperature oxide selection

论文作者

McClure, Zachary D., Strachan, Alejandro H.

论文摘要

与当今最先进的状态相比,工作温度较高的材料可以改善几种应用中的系统性能并实现新技术。在大多数情况下,需要高温和热力学稳定性以及低离子扩散率的保护性氧化物尺度。因此,高温系统的设计将受益于对所有已知氧化物的知识和相关性的知识。尽管某些感兴趣的特性在许多氧化物中闻名(例如,存在超过1,000个氧化物的弹性常数),但熔化温度以相对较小的亚群而闻名。熔化温度的确定是在实验和计算上都耗时且昂贵的,因此我们使用数据科学工具从现有数据中开发预测模型。相对较少的可用熔化温度值排除了标准工具的使用;因此,我们使用基于顺序学习的多步进方法,其中利用第一原理计算的替代数据使用小数据集开发模型。我们使用这些模型来预测近11,000个氧化物的所需特性,并量化该空间中的不确定性。

Materials with higher operating temperatures than today's state of the art can improve system performance in several applications and enable new technologies. Under most scenarios, a protective oxide scale with high melting temperatures and thermodynamic stability as well as low ionic diffusivity is required. Thus, the design of high-temperature systems would benefit from knowledge of these properties and related ones for all known oxides. While some properties of interest are known for many oxides (e.g. elastic constants exist for over 1,000 oxides), melting temperature is known for a relatively small subset. The determination of melting temperatures is time consuming and costly, both experimentally and computationally, thus we use data science tools to develop predictive models from the existing data. The relatively small number of available melting temperature values precludes the use of standard tools; therefore, we use a multi-step approach based on sequential learning where surrogate data from first-principles calculations is leveraged to develop models using small datasets. We use these models to predict the desired properties for nearly 11,000 oxides and quantify uncertainties in the space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源