论文标题

基于Horizo​​n Control的在线运动计划的退缩,具有部分不可行的LTL规格

Receding Horizon Control Based Online Motion Planning with Partially Infeasible LTL Specifications

论文作者

Cai, Mingyu, Peng, Hao, Li, Zhijun, Gao, Hongbo, Kan, Zhen

论文摘要

这项工作考虑了受线性时间逻辑(LTL)约束的在线最佳运动计划。环境在包含移动障碍和感兴趣的时变领域(即时变奖励和工作空间属性)的意义上是动态的。由于用户指定的任务可能无法完全实现(即部分不可行),因此该工作考虑了硬和软的LTL约束,在这些工作中,硬约束强制执行安全要求(例如避免障碍),而软约束表示可以放松的任务以不严格遵循用户规格。代理商的运动计划是在优先级的降低顺序下生成政策,至1)正式保证对安全限制的满意度; 2)主要满足软限制(即,如果所需的任务部分不可行,则将违规成本降至最低); 3)优化收集奖励的目标(即,访问更多兴趣的动态领域)。为了实现这些目标,构建了一个放松的产品自动机,允许代理商不严格遵循所需的LTL约束。开发了实用功能来量化修订后的运动计划和所需的运动计划之间的差异,并且累积的奖励旨在将运动计划偏向于更多利益的领域。向后的Horizo​​n控制与LTL公式合成,以最大化有限的地平线上的累积实用程序,同时确保完全满足安全性限制,并且大多满足了软限制。提供了模拟和实验结果,以证明开发运动策略的有效性。

This work considers online optimal motion planning of an autonomous agent subject to linear temporal logic (LTL) constraints. The environment is dynamic in the sense of containing mobile obstacles and time-varying areas of interest (i.e., time-varying reward and workspace properties) to be visited by the agent. Since user-specified tasks may not be fully realized (i.e., partially infeasible), this work considers hard and soft LTL constraints, where hard constraints enforce safety requirement (e.g. avoid obstacles) while soft constraints represent tasks that can be relaxed to not strictly follow user specifications. The motion planning of the agent is to generate policies, in decreasing order of priority, to 1) formally guarantee the satisfaction of safety constraints; 2) mostly satisfy soft constraints (i.e., minimize the violation cost if desired tasks are partially infeasible); and 3) optimize the objective of rewards collection (i.e., visiting dynamic areas of more interests). To achieve these objectives, a relaxed product automaton, which allows the agent to not strictly follow the desired LTL constraints, is constructed. A utility function is developed to quantify the differences between the revised and the desired motion plan, and the accumulated rewards are designed to bias the motion plan towards those areas of more interests. Receding horizon control is synthesized with an LTL formula to maximize the accumulated utilities over a finite horizon, while ensuring that safety constraints are fully satisfied and soft constraints are mostly satisfied. Simulation and experiment results are provided to demonstrate the effectiveness of the developed motion strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源