论文标题
具有元类型的主要资源公平性
Dominant Resource Fairness with Meta-Types
论文作者
论文摘要
受到最近的Covid-19大流行的启发,我们研究了多余的分配问题与异质需求和Leontief公用事业的概括。与现有设置不同,我们允许每个代理商指定要求仅接受每个资源总供应子集的分配。这些要求可以在位置限制下进行形式(例如,由于通勤限制,医院只能接受住在附近的志愿者)。这也可以建模一种替代效应,其中一些代理需要1个单位资源A \ emph {或} b,均属于同一元型。但是有些代理商特别想要A,而其他代理则特别想要B。我们提出了一种新机制,称为主要资源公平,具有元类型,该机制通过求解少量线性程序来决定分配。所提出的方法满足了帕累托的最优性,嫉妒性,防止策略,以及为我们的环境共享激励措施的概念。据我们所知,我们是第一个研究这种问题表述的人,通过捕获更多在现实生活中经常出现的约束来改善现有工作。最后,我们从数值上表明,我们的方法比替代方法更好地缩放到大问题。
Inspired by the recent COVID-19 pandemic, we study a generalization of the multi-resource allocation problem with heterogeneous demands and Leontief utilities. Unlike existing settings, we allow each agent to specify requirements to only accept allocations from a subset of the total supply for each resource. These requirements can take form in location constraints (e.g. A hospital can only accept volunteers who live nearby due to commute limitations). This can also model a type of substitution effect where some agents need 1 unit of resource A \emph{or} B, both belonging to the same meta-type. But some agents specifically want A, and others specifically want B. We propose a new mechanism called Dominant Resource Fairness with Meta Types which determines the allocations by solving a small number of linear programs. The proposed method satisfies Pareto optimality, envy-freeness, strategy-proofness, and a notion of sharing incentive for our setting. To the best of our knowledge, we are the first to study this problem formulation, which improved upon existing work by capturing more constraints that often arise in real life situations. Finally, we show numerically that our method scales better to large problems than alternative approaches.