论文标题
$ \ text {bi}/\ text {tio} _ {2} $ core/core/shell纳米线
Semimetal to semiconductor transition in $\text{Bi}/\text{TiO}_{2}$ core/shell nanowires
论文作者
论文摘要
我们证明了基于bismuth(BI基)核心/壳纳米线的完整热电和结构表征。应变对电导率温度依赖性的影响,绝对塞贝克系数和二氧化物二氧化氢二氧化钛的导热率($ \ text {bi}/\ text {tio} _ {2} _ {2} $)的纳米纳米含量不同,并与Biir and/Bimut and/Bimuth(Bi)(Biir)和Bimuth(bi)相比 大部分。芯和外壳之间的表面,晶体缺陷和接口的散射可将电导率降低到小于$ 5 \,\%$,而导热率则小于$ 25 \,\%$ \%$至$ 50 \,\%\%\%$ $ \%$ $。代表压缩应变,$ \ text {bi}/\ text {tio} _ {2} $ core/shell纳米线显示出降低的电导率,而温度降低,与BI和BI/TE纳米线相对的温度降低。我们发现,$ \ text {tio} _ {2} $ shell引起的压缩应变会导致需要次鞭毛的开放,从而使绝对的Seebeck系数$ 10 \,\%$ \%$至$ 30 \,\%$,与室温相比。在半导体状态下,激活能量被确定为$ \左| 41.3 \ pm0.2 \ right | \,\ text {mev} $。我们表明,如果应变超过弹性极限,则由于晶格松弛而恢复半金属状态。
We demonstrate the full thermoelectric and structural characterization of individual bismuth-based (Bi-based) core/shell nanowires. The influence of strain on the temperature dependence of the electrical conductivity, the absolute Seebeck coefficient and the thermal conductivity of bismuth/titanium dioxide ($\text{Bi}/\text{TiO}_{2}$) nanowires with different diameters is investigated and compared to bismuth (Bi) and bismuth/tellurium (Bi/Te) nanowires and bismuth bulk. Scattering at surfaces, crystal defects and interfaces between the core and the shell reduces the electrical conductivity to less than $5\,\%$ and the thermal conductivity to less than $25\,\%$ to $50\,\%$ of the bulk value at room temperature. On behalf of a compressive strain, $\text{Bi}/\text{TiO}_{2}$ core/shell nanowires show a decreasing electrical conductivity with decreasing temperature opposed to that of Bi and Bi/Te nanowires. We find that the compressive strain induced by the $\text{TiO}_{2}$ shell can lead to a band opening of bismuth increasing the absolute Seebeck coefficient by $10\,\%$ to $30\,\%$ compared to bulk at room temperature. In the semiconducting state, the activation energy is determined to $\left|41.3\pm0.2\right|\,\text{meV}$. We show that if the strain exceeds the elastic limit the semimetallic state is recovered due to the lattice relaxation.