论文标题

利用神经影像数据的空间同质性:CNN的贴片单个滤镜层

Harnessing spatial homogeneity of neuroimaging data: patch individual filter layers for CNNs

论文作者

Eitel, Fabian, Albrecht, Jan Philipp, Weygandt, Martin, Paul, Friedemann, Ritter, Kerstin

论文摘要

神经影像学数据,例如从磁共振成像(MRI)获得的,由于(1)大脑的均匀结构以及(2)使用线性和非线性转换将数据正常化为标准模板的额外努力,因此相当均匀。相比之下,卷积神经网络(CNN)是专门为高度异构数据(例如自然图像)设计的,它通过在图像中的不同位置上滑动卷积过滤器。在这里,我们建议一种新的CNN体​​系结构,将神经网络中的分层抽象结合在一起,并在神经影像学数据的空间均匀性上进行先验:尽管使用标准卷积层在全球范围内对早期层进行了培训,但我们引入了更高的,更多的抽象层贴片单个过滤器(PIF)。通过在各个图像区域(补丁)中学习过滤器而无需共享权重,PIF层可以更快地学习抽象功能,并使用较少的样品学习。我们对三种不同的任务和数据集的PIF层进行了彻底评估,即对英国生物库数据,阿尔茨海默氏病数据的检测以及对私人医院数据的多发性硬化症检测。我们证明,使用PIF层的CNN会导致更高的精度,尤其是在低样本量设置中,并且需要更少的训练时期才能收敛。据我们所知,这是第一项介绍CNN学习脑MRI的先验研究。

Neuroimaging data, e.g. obtained from magnetic resonance imaging (MRI), is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. Convolutional neural networks (CNNs), in contrast, have been specifically designed for highly heterogeneous data, such as natural images, by sliding convolutional filters over different positions in an image. Here, we suggest a new CNN architecture that combines the idea of hierarchical abstraction in neural networks with a prior on the spatial homogeneity of neuroimaging data: Whereas early layers are trained globally using standard convolutional layers, we introduce for higher, more abstract layers patch individual filters (PIF). By learning filters in individual image regions (patches) without sharing weights, PIF layers can learn abstract features faster and with fewer samples. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer's disease detection on ADNI data and multiple sclerosis detection on private hospital data. We demonstrate that CNNs using PIF layers result in higher accuracies, especially in low sample size settings, and need fewer training epochs for convergence. To the best of our knowledge, this is the first study which introduces a prior on brain MRI for CNN learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源