论文标题
超导记忆电池通过三维NB纳米抗量子量子干扰装置的小型记忆电池的微型化
Miniaturization of the Superconducting Memory Cell via a Three-Dimensional Nb Nano-Superconducting Quantum Interference Device
论文作者
论文摘要
长期以来,需要匹配超导逻辑电路速度的可扩展记忆,以实现超导计算机。包括约瑟夫森连接的超导循环可以将通量量子状态存储在picseconds中。但是,对循环电感建立双状态磁滞的要求设定了单个存储单元占据的最小区域的限制。在这里,我们提出了一个基于三维(3D)NB纳米 - 抗性量子干扰装置(Nano-Squid)的微型超导记忆细胞。此处的主要单元区域适合8*9μm^2矩形,具有交叉选择的函数以实现。该单元显示,由于3D纳米平方的调制深度较大(〜66%),由于偏置电流所产生的两个相邻的通量量子状态之间的周期性可调滞后。此外,正如理论建模所预测的那样,纳米平方的测得的纳米平方的电流关系(CPR)被证明是从正弦函数中偏斜的。 3D纳米平方的偏度和临界电流线性相关。还发现,使用26个设备表征的统计数据,磁滞回路大小与CPR偏度的线性缩放关系处于线性缩放关系。我们表明,π/4〜3π/4的CPR偏度范围等于在创建用于记忆实现的稳定的双态磁滞时具有较大的回路电感。因此,3D纳米平方的偏斜CPR通过克服环路区域的电感限制,可以进一步超过记忆细胞微型化。
Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bi-state hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a Three-Dimensional (3D) Nb nano-Superconducting QUantum Interference Device (nano-SQUID). The major cell area here fits within an 8*9 μm^2 rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighbouring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (~66%). Furthermore, the measured Current-Phase Relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modelling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterisation of 26 devices. We show that the CPR skewness range of π/4~3π/4 is equivalent to a large loop inductance in creating a stable bi-state hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.