论文标题
扭曲的索引和拓扑鞍座
The Twisted Index and Topological Saddles
论文作者
论文摘要
$ s^1 \ timesσ$上的3D $ \ MATHCAL {n} = 2 $量学理论的扭曲索引具有代数几何解释,作为有效的超对称量子力学的Witten索引。在本文中,我们考虑了亚伯仪理论的超对称性定位中对超对称量子力学的贡献。拓扑马鞍是物质字段消失和规格对称性不间断的配置,这对于无效的有效Chern-Simons水平存在。我们计算出对拓扑和涡旋状的鞍点对扭曲指数的贡献,并表明它们的组合恢复了扭曲指数及其墙壁交叉的Jeffrey-Kirwan残留处方。
The twisted index of 3d $\mathcal{N}=2$ gauge theories on $S^1 \times Σ$ has an algebro-geometric interpretation as the Witten index of an effective supersymmetric quantum mechanics. In this paper, we consider the contributions to the supersymmetric quantum mechanics from topological saddle points in supersymmetric localisation of abelian gauge theories. Topological saddles are configurations where the matter fields vanish and the gauge symmetry is unbroken, which exist for non-vanishing effective Chern-Simons levels. We compute the contributions to the twisted index from both topological and vortex-like saddles points and show that their combination recovers the Jeffrey-Kirwan residue prescription for the twisted index and its wall-crossing.