论文标题

储存拟合学习与功能可发展的流

Storage Fit Learning with Feature Evolvable Streams

论文作者

Hou, Bo-Jian, Yan, Yu-Hu, Zhao, Peng, Zhou, Zhi-Hua

论文摘要

近年来,已广泛研究了功能可发展的学习,其中旧功能将消失,并且在学习流时将出现新功能。常规方法通常假设在每个时间步骤的预测后都会揭示标签。但是,实际上,此假设可能无法成立,而在大多数时间步骤中都不会给出标签。一个好的解决方案是利用歧管正则化技术利用以前的类似数据来帮助在线模型的完善。然而,这种方法需要存储所有以前的数据,这在学习流中是不可能的,这些流数依次到达。因此,我们需要一个缓冲区来存储其中的一部分。考虑到不同的设备可能具有不同的存储预算,因此学习方法应符合存储预算限制的灵活性。在本文中,我们提出了一个新的设置:存储拟合可衍生的流媒体学习(SF $^2 $ EL),该学习将较少提供标签的问题纳入特征演化中。当使用功能可演化的流和未标记的数据学习时,我们的框架能够将其行为适应不同的存储预算。此外,理论和经验结果都验证了我们的方法可以保留原始特征可转化的学习的优点,即始终可以跟踪最佳基线,从而在任何时间步骤中表现良好。

Feature evolvable learning has been widely studied in recent years where old features will vanish and new features will emerge when learning with streams. Conventional methods usually assume that a label will be revealed after prediction at each time step. However, in practice, this assumption may not hold whereas no label will be given at most time steps. A good solution is to leverage the technique of manifold regularization to utilize the previous similar data to assist the refinement of the online model. Nevertheless, this approach needs to store all previous data which is impossible in learning with streams that arrive sequentially in large volume. Thus we need a buffer to store part of them. Considering that different devices may have different storage budgets, the learning approaches should be flexible subject to the storage budget limit. In this paper, we propose a new setting: Storage-Fit Feature-Evolvable streaming Learning (SF$^2$EL) which incorporates the issue of rarely-provided labels into feature evolution. Our framework is able to fit its behavior to different storage budgets when learning with feature evolvable streams with unlabeled data. Besides, both theoretical and empirical results validate that our approach can preserve the merit of the original feature evolvable learning i.e., can always track the best baseline and thus perform well at any time step.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源