论文标题
广义的hosmer-lemeshow拟合优度测试,用于一系列广义线性模型
A Generalized Hosmer-Lemeshow Goodness-of-Fit Test for a Family of Generalized Linear Models
论文作者
论文摘要
广义线性模型(GLM)用于大量应用域内。但是,对模型$ - $ $所谓的“全球”测试$ - $的整体拟合度的正式良好(GOF)测试似乎仅适用于某些类别的GLMS。在本文中,我们开发并采用了新的全球拟合测试,类似于著名且常用的Hosmer-Lemeshow(HL)测试,该测试可与多种GLM一起使用。测试统计量是HL测试统计量的变体,但是我们使用Stute and Zhu(2002)的方法严格地得出了渐近正确的测试统计统计统计统计抽样分布。我们的新测试对于实施和解释相对简单。我们演示了对真实数据集的测试,并将新测试的性能与GLM的其他全球GOF测试进行比较,发现我们的测试在各种模拟设置中提供了竞争性或可比性的功能。我们的测试还避免了在各种GOF测试进行回归中使用的基于内核的估计器,从而避免了带宽选择和维度的诅咒。由于已知渐近采样分布,因此也不需要进行计算p值的自举程序,因此我们发现进行测试是计算上有效的。
Generalized linear models (GLMs) are used within a vast number of application domains. However, formal goodness of fit (GOF) tests for the overall fit of the model$-$so-called "global" tests$-$seem to be in wide use only for certain classes of GLMs. In this paper we develop and apply a new global goodness-of-fit test, similar to the well-known and commonly used Hosmer-Lemeshow (HL) test, that can be used with a wide variety of GLMs. The test statistic is a variant of the HL test statistic, but we rigorously derive an asymptotically correct sampling distribution of the test statistic using methods of Stute and Zhu (2002). Our new test is relatively straightforward to implement and interpret. We demonstrate the test on a real data set, and compare the performance of our new test with other global GOF tests for GLMs, finding that our test provides competitive or comparable power in various simulation settings. Our test also avoids the use of kernel-based estimators, used in various GOF tests for regression, thereby avoiding the issues of bandwidth selection and the curse of dimensionality. Since the asymptotic sampling distribution is known, a bootstrap procedure for the calculation of a p-value is also not necessary, and we therefore find that performing our test is computationally efficient.