论文标题

与因果关系的双重稳健估计与缺失的混杂因素的双重可能性参数化

A coherent likelihood parametrization for doubly robust estimation of a causal effect with missing confounders

论文作者

Evans, Katherine, Fulcher, Isabel, Tchetgen, Eric J. Tchetgen

论文摘要

缺少数据和混杂是研究人员在观察研究中面临的两个问题,以实现比较有效性。威廉姆森等人。 (2012年)最近提出了一种统一的方法,可以在假设混杂因素随机缺失的假设下使用多重运动(MR)方法同时处理这两个问题。他们的方法考虑了一个模型联合,其中任何子模型具有参数组件,而其余模型则不受限制。我们表明,尽管它们的估计函数在理论上是MR,但由于联合模型的不同组件的参数模型并非独立,因此多重稳健推断的可能性使MR属性在实践中不可能保持不可能。为了解决这个问题,我们提出了一种可能性函数的替代性透明参数化,这使评估MR有效分数所需的各种滋扰函数之间的模型依赖性。所提出的方法确实是双重的(DR),因为如果有两组建模假设之一,则它是一致的,渐近的正常。我们通过模拟研究评估了DR方法的性能和双重鲁棒性能。

Missing data and confounding are two problems researchers face in observational studies for comparative effectiveness. Williamson et al. (2012) recently proposed a unified approach to handle both issues concurrently using a multiply-robust (MR) methodology under the assumption that confounders are missing at random. Their approach considers a union of models in which any submodel has a parametric component while the remaining models are unrestricted. We show that while their estimating function is MR in theory, the possibility for multiply robust inference is complicated by the fact that parametric models for different components of the union model are not variation independent and therefore the MR property is unlikely to hold in practice. To address this, we propose an alternative transparent parametrization of the likelihood function, which makes explicit the model dependencies between various nuisance functions needed to evaluate the MR efficient score. The proposed method is genuinely doubly-robust (DR) in that it is consistent and asymptotic normal if one of two sets of modeling assumptions holds. We evaluate the performance and doubly robust property of the DR method via a simulation study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源