论文标题
HINET:通过神经网络从暗物质中产生中性氢
HInet: Generating neutral hydrogen from dark matter with neural networks
论文作者
论文摘要
即将进行的21厘米调查将在很大的宇宙学体积上绘制宇宙中性氢(HI)的空间分布。为了最大程度地提高这些调查的科学回报,需要进行准确的理论预测。当前的流体动力模拟是最准确的工具,可在轻度至非线性方案中提供这些预测。不幸的是,他们的计算成本很高:数千万CPU小时。我们使用卷积神经网络从N体模拟中的物质的空间分布与最先进的流体动力模拟Illustristng中的HI之间找到映射。我们的模型的性能优于广泛使用的理论模型:所有统计属性的光环职业分布(HOD),直至非线性尺度$ k \ simsim1 $ h/mpc。我们的方法允许在非常大的宇宙学体积上生成21厘米模拟,具有与流体动力模拟相似的特性。
Upcoming 21cm surveys will map the spatial distribution of cosmic neutral hydrogen (HI) over very large cosmological volumes. In order to maximize the scientific return of these surveys, accurate theoretical predictions are needed. Hydrodynamic simulations currently are the most accurate tool to provide those predictions in the mildly to non-linear regime. Unfortunately, their computational cost is very high: tens of millions of CPU hours. We use convolutional neural networks to find the mapping between the spatial distribution of matter from N-body simulations and HI from the state-of-the-art hydrodynamic simulation IllustrisTNG. Our model performs better than the widely used theoretical model: Halo Occupation Distribution (HOD) for all statistical properties up to the non-linear scales $k\lesssim1$ h/Mpc. Our method allows the generation of 21cm mocks over very big cosmological volumes with similar properties as hydrodynamic simulations.