论文标题

高阶$ q $ curvature方程的存在结果

Existence results for the higher-order $Q$-curvature equation

论文作者

Mazumdar, Saikat, Vétois, Jérôme

论文摘要

我们获得了$ q $ c的订单方程的存在结果$ 2K $在封闭的Riemannian dimensian $ n \ ge 2k+1 $的封闭歧管上,其中$ k \ ge1 $是整数。我们在以下假设下获得了这些结果:订单$ 2K $的Yamabe不变性是正的,并且相应运算符的绿色功能是正,例如,当歧管是Einstein具有正标曲率的爱因斯坦时,这是满足的。如果$ 2K+1 \ le n \ le2k+3 $或$(m,g)$在本地固定时,我们还假设操作员具有正质量。如果$ n \ ge2k+4 $和$(m,g)$不是本地固定的,那么结果基本上减少了仅根据$ n $和$ k $的确定复杂常数的确定。

We obtain existence results for the $Q$-curvature equation of order $2k$ on a closed Riemannian manifold of dimension $n\ge 2k+1$, where $k\ge1$ is an integer. We obtain these results under the assumptions that the Yamabe invariant of order $2k$ is positive and the Green's function of the corresponding operator is positive, which are satisfied for instance when the manifold is Einstein with positive scalar curvature. In the case where $2k+1\le n\le2k+3$ or $(M,g)$ is locally conformally flat, we assume moreover that the operator has positive mass. In the case where $n\ge2k+4$ and $(M,g)$ is not locally conformally flat, the results essentially reduce to the determination of the sign of a complicated constant depending only on $n$ and $k$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源