论文标题
(1,2)$的非线性分数微分方程的存在和唯一性结果
Existence and Uniqueness Results for a nonlinear fractional differential equations of order $σ\in(1,2)$
论文作者
论文摘要
本文的主要目的是讨论涉及非线性微分方程的局部解决方案的局部存在,该方程是从riemann-liouville分数衍生物(1,2)中的订单$σ\ in(1,2)$的局部,当非线性术语在零时的不连续性时。此后,通过使用诸如Hölder不平等的Lebesgue空间工具,我们获得了Nagumo-type,Krasnoselskii-krein型和Osgood-type唯一定理的定理。
The main objective of this article is to discuss the local existence of the solution to an initial value problem involving a non-linear differential equation in the sense of Riemann-Liouville fractional derivative of order $σ\in(1,2),$ when the nonlinear term has a discontinuity at zero. Hereafter, by using some tools of Lebesgue spaces such as Hölder inequality, we obtain Nagumo-type, Krasnoselskii-Krein-type and Osgood-type uniqueness theorems for the problem.