论文标题

关于梯度在机器学习分子能量和力的作用

On the role of gradients for machine learning of molecular energies and forces

论文作者

Christensen, Anders S., von Lilienfeld, O. Anatole

论文摘要

任何机器学习潜力的准确性只能与拟合过程中使用的数据一样好。因此,最有效的模型选择了与获得培训数据相比,该数据将产生最高精度的训练数据。我们研究了在能量和力标签训练的有机分子的量子机学习模型的预测误差的收敛性,这是分子模拟中的两种常见数据类型。当训练和预测与同一单个分子相对应的不同几何形状时,我们发现在训练数据中包含原子力会提高预测能量和力的准确性7倍,而仅在能量训练的模型中。令人惊讶的是,对于在非平衡构象中训练有不同大小和组成的有机分子训练的模型,将力纳入训练并不能改善新构象中未看到分子的预测能量。但是,预测力也提高了约7倍。对于所研究的系统,我们发现力标签和能量标签对预测误差的收敛贡献也同样贡献。因此,选择在训练集中包括在训练集中包括原子力等导数,不仅取决于获取用于训练的力标签的计算成本,还取决于应用域,感兴趣的属性以及机器学习模型的理想大小。根据我们的观察,我们描述了创建数据集的主要考虑因素,以最大程度地提高所得机器学习模型的效率的分子的势能表面。

The accuracy of any machine learning potential can only be as good as the data used in the fitting process. The most efficient model therefore selects the training data that will yield the highest accuracy compared to the cost of obtaining the training data. We investigate the convergence of prediction errors of quantum machine learning models for organic molecules trained on energy and force labels, two common data types in molecular simulations. When training and predicting on different geometries corresponding to the same single molecule, we find that the inclusion of atomic forces in the training data increases the accuracy of the predicted energies and forces 7-fold, compared to models trained on energy only. Surprisingly, for models trained on sets of organic molecules of varying size and composition in non-equilibrium conformations, inclusion of forces in the training does not improve the predicted energies of unseen molecules in new conformations. Predicted forces, however, also improve about 7-fold. For the systems studied, we find that force labels and energy labels contribute equally per label to the convergence of the prediction errors. Choosing to include derivatives such as atomic forces in the training set or not should thus depend on, not only on the computational cost of acquiring the force labels for training, but also on the application domain, the property of interest, and the desirable size of the machine learning model. Based on our observations we describe key considerations for the creation of datasets for potential energy surfaces of molecules which maximize the efficiency of the resulting machine learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源