论文标题

原星磁盘中的CO耗竭:结合物理隔离和化学加工的统一图片

CO Depletion in Protoplanetary Disks: A Unified Picture Combining Physical Sequestration and Chemical Processing

论文作者

Krijt, Sebastiaan, Bosman, Arthur D., Zhang, Ke, Schwarz, Kamber R., Ciesla, Fred J., Bergin, Edwin A.

论文摘要

在原始磁盘中的气相CO丰度(相对于氢)从其ISM值$ {\ sim} 10^{ - 4} $降低了2个数量级,即使考虑到了冻结和散热和摄影。先前的研究表明,虽然CO的局部化学处理以及中平面中固体上的CO冰的隔离都可以促进,但这些过程似乎都无法始终如一地达到$ 1 { - } 3 \ Mathrm {〜myr} $的相关时间表上观察到的耗竭因子。在这项研究中,我们通过将紧凑的化学网络(以碳和氧为中心)包括到2D($ r+z $)的外部($ r> 20 \ 20 \ MathRM {〜Au} $)磁盘区域的2D($ r+z $)模拟,同时对这些过程进行建模。通常,我们发现CO/H $ _2 $丰度是时间和位置的复杂功能。专注于温暖分子层中的CO,我们发现只有最完整的模型(包括化学和卵石进化)才能达到与观察结果一致的耗竭因子。在没有压力陷阱的情况下,高效的行星形成或高宇宙射线电离速率,该模型还可以预测CO蒸气内部与CO雪线的复活。我们显示了物理和化学过程对元素(C/O)和(C/H)比(在气体和冰期)的影响,讨论CO用作磁盘质量示踪剂的使用,最后,将我们预测的卵石冰组成与原始的卵石组成与原始的卵石组成,如在冷经典的Kuiper kuiper kuiper带和Debris和Debris和Debris和Debris和Debris和Debris中所发现的原始行星。

The gas-phase CO abundance (relative to hydrogen) in protoplanetary disks decreases by up to 2 orders of magnitude from its ISM value ${\sim}10^{-4}$, even after accounting for freeze-out and photo-dissociation. Previous studies have shown that while local chemical processing of CO and the sequestration of CO ice on solids in the midplane can both contribute, neither of these processes appears capable of consistently reaching the observed depletion factors on the relevant timescale of $1{-}3\mathrm{~Myr}$. In this study, we model these processes simultaneously by including a compact chemical network (centered on carbon and oxygen) to 2D ($r+z$) simulations of the outer ($r>20\mathrm{~au}$) disk regions that include turbulent diffusion, pebble formation, and pebble dynamics. In general, we find that the CO/H$_2$ abundance is a complex function of time and location. Focusing on CO in the warm molecular layer, we find that only the most complete model (with chemistry and pebble evolution included) can reach depletion factors consistent with observations. In the absence of pressure traps, highly-efficient planetesimal formation, or high cosmic ray ionization rates, this model also predicts a resurgence of CO vapor interior to the CO snowline. We show the impact of physical and chemical processes on the elemental (C/O) and (C/H) ratios (in the gas and ice phases), discuss the use of CO as a disk mass tracer, and, finally, connect our predicted pebble ice compositions to those of pristine planetesimals as found in the Cold Classical Kuiper Belt and debris disks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源