论文标题

面对3D面部先验指导的超分辨率

Face Super-Resolution Guided by 3D Facial Priors

论文作者

Hu, Xiaobin, Ren, Wenqi, LaMaster, John, Cao, Xiaochun, Li, Xiaoming, Li, Zechao, Menze, Bjoern, Liu, Wei

论文摘要

最先进的面对超分辨率方法采用深层卷积神经网络,通过探索当地的外观知识来学习低分辨率和高分辨率面部模式之间的映射。但是,这些方法中的大多数都不能很好地利用面部结构和身份信息,并且难以处理表现出巨大姿势变化的面部图像。在本文中,我们提出了一种新型的面部超分辨率方法,该方法明确结合了3D面部先验,该方法掌握了锋利的面部结构。我们的工作是第一个基于面部属性参数描述(例如身份,面部表达,纹理,照明和面部姿势)的参数描述融合的3D形态知识的工作。此外,先验可以轻松地纳入任何网络,并且在提高性能和加速融合速度方面非常有效。首先,建立了一个3D面渲染分支,以获得显着面部结构和身份知识的3D先验。其次,空间注意模块用于更好地利用超分辨率问题的此分层信息(即强度相似性,3D面部结构和身份含量)。广泛的实验表明,所提出的3D先验在最新面前获得了优越的面部超分辨率结果。

State-of-the-art face super-resolution methods employ deep convolutional neural networks to learn a mapping between low- and high- resolution facial patterns by exploring local appearance knowledge. However, most of these methods do not well exploit facial structures and identity information, and struggle to deal with facial images that exhibit large pose variations. In this paper, we propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures. Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes (e.g., identity, facial expression, texture, illumination, and face pose). Furthermore, the priors can easily be incorporated into any network and are extremely efficient in improving the performance and accelerating the convergence speed. Firstly, a 3D face rendering branch is set up to obtain 3D priors of salient facial structures and identity knowledge. Secondly, the Spatial Attention Module is used to better exploit this hierarchical information (i.e., intensity similarity, 3D facial structure, and identity content) for the super-resolution problem. Extensive experiments demonstrate that the proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源