论文标题

ML隐私计:通过量化机器学习的隐私风险来协助监管合规性

ML Privacy Meter: Aiding Regulatory Compliance by Quantifying the Privacy Risks of Machine Learning

论文作者

Murakonda, Sasi Kumar, Shokri, Reza

论文摘要

当使用敏感数据构建机器学习模型时,组织应确保对此类系统中处理的数据得到充分保护。对于涉及个人数据的机器学习的项目,GDPR第35条要求其执行数据保护影响评估(DPIA)。除了通过安全漏洞访问数据的威胁外,机器学习模型还通过通过模型预测和参数间接揭示数据对数据构成了额外的隐私风险。信息专员办公室(UK)和美国国家标准技术研究所(US)发布的指南强调了模型对数据的威胁,并建议组织考虑并估算这些风险,以遵守数据保护法规。因此,需要立即需要一种可以量化模型数据的隐私风险的工具。 在本文中,我们关注有关机器学习模型培训数据的这种间接泄漏。我们提出ML隐私计,该工具可以通过最新的成员推理攻击技术量化模型数据的隐私风险。我们讨论该工具在部署机器学习模型时如何帮助从业者遵守数据保护法规。

When building machine learning models using sensitive data, organizations should ensure that the data processed in such systems is adequately protected. For projects involving machine learning on personal data, Article 35 of the GDPR mandates it to perform a Data Protection Impact Assessment (DPIA). In addition to the threats of illegitimate access to data through security breaches, machine learning models pose an additional privacy risk to the data by indirectly revealing about it through the model predictions and parameters. Guidances released by the Information Commissioner's Office (UK) and the National Institute of Standards and Technology (US) emphasize on the threat to data from models and recommend organizations to account for and estimate these risks to comply with data protection regulations. Hence, there is an immediate need for a tool that can quantify the privacy risk to data from models. In this paper, we focus on this indirect leakage about training data from machine learning models. We present ML Privacy Meter, a tool that can quantify the privacy risk to data from models through state of the art membership inference attack techniques. We discuss how this tool can help practitioners in compliance with data protection regulations, when deploying machine learning models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源