论文标题
多任务神经网络具有视网膜血管分割和动脉/静脉分类的空间激活
Multi-Task Neural Networks with Spatial Activation for Retinal Vessel Segmentation and Artery/Vein Classification
论文作者
论文摘要
视网膜动脉/静脉(A/V)分类在临床生物标志物研究中对各种全身性和心血管疾病如何影响视网膜血管起着至关重要的作用。自动A/V分类的常规方法通常是复杂的,并且在很大程度上取决于精确的容器分割。在本文中,我们提出了一个具有空间激活机制的多任务深神经网络,该网络能够同时分割全视网膜血管,动脉和静脉,而无需预先提取血管分割。网络的输入模块集成了广泛使用的视网膜预处理和血管增强技术的域知识。我们使用空间激活机制专门自定义网络的输出块,该机制利用了相对更容易的船只分割任务,并利用它来提高A/V分类的性能。此外,对网络进行了深入的监督,以帮助低级层提取更多的语义信息。提出的网络可实现船舶分割的像素的精度为95.70%,而A/V分类精度为94.50%,这是AV-DRIVE数据集中这两个任务的最新性能。此外,我们还测试了Inspire-AVR数据集上的模型性能,该数据集的骨骼A/V分类精度为91.6%。
Retinal artery/vein (A/V) classification plays a critical role in the clinical biomarker study of how various systemic and cardiovascular diseases affect the retinal vessels. Conventional methods of automated A/V classification are generally complicated and heavily depend on the accurate vessel segmentation. In this paper, we propose a multi-task deep neural network with spatial activation mechanism that is able to segment full retinal vessel, artery and vein simultaneously, without the pre-requirement of vessel segmentation. The input module of the network integrates the domain knowledge of widely used retinal preprocessing and vessel enhancement techniques. We specially customize the output block of the network with a spatial activation mechanism, which takes advantage of a relatively easier task of vessel segmentation and exploits it to boost the performance of A/V classification. In addition, deep supervision is introduced to the network to assist the low level layers to extract more semantic information. The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks on the AV-DRIVE dataset. Furthermore, we have also tested the model performance on INSPIRE-AVR dataset, which achieves a skeletal A/V classification accuracy of 91.6%.