论文标题

负载平衡问题的添加近似方案

Additive Approximation Schemes for Load Balancing Problems

论文作者

Buchem, Moritz, Rohwedder, Lars, Vredeveld, Tjark, Wiese, Andreas

论文摘要

在本文中,我们介绍了添加剂近似方案的概念,并将其应用于负载平衡问题。添加剂近似方案旨在找到具有绝对误差目标的解决方案,最多是$εh$,对于某些合适的参数$ h $。如果参数$ h $提供下限的添加剂近似方案意味着标准的乘法近似方案,并且当$ h \ ll $ opt时可能会更强大。另一方面,当不存在PTA(或不可能存在)时,添加近似方案可以提供不同的概念以进行近似。 我们考虑将作业分配给机器负载的相同机器和上限的相同机器。这种设置概括了MakePan最小化,圣诞老人问题(在相同的机器上)以及嫉妒最小的圣诞老人问题等问题。对于最后一个问题,目的是最大程度地减少最大负载和最小负载之间的差异,最佳目标值可能为零,因此获得任何乘法近似保证是NP-HARD。对于这类问题,我们以$ h = p _ {\ max} $的最大处理时间为$ h = p _ {\ max} $提出加法近似方案。 我们的技术贡献是两个方面。首先,我们基于将插槽分配给计算机,并将作业分配给老虎机(插槽 - 米尔普),引入了一种新的放松。我们确定了插槽 - 米尔普的(接近)最佳解决方案的结构特性,这使我们能够有效地解决它,假设机器负载上有$ o(1)$不同的下限和上限(这是上述三个问题的相关设置)。第二个技术贡献是一种基于本地搜索的算法,该算法将解决方案四舍五入到插槽-MILP上,该算法在目标负载间隔上引入了添加误差,最多$ε\ cdot p _ {\ max} $。

In this paper we introduce the concept of additive approximation schemes and apply it to load balancing problems. Additive approximation schemes aim to find a solution with an absolute error in the objective of at most $εh$ for some suitable parameter $h$. In the case that the parameter $h$ provides a lower bound an additive approximation scheme implies a standard multiplicative approximation scheme and can be much stronger when $h \ll$ OPT. On the other hand, when no PTAS exists (or is unlikely to exist), additive approximation schemes can provide a different notion for approximation. We consider the problem of assigning jobs to identical machines with lower and upper bounds for the loads of the machines. This setting generalizes problems like makespan minimization, the Santa Claus problem (on identical machines), and the envy-minimizing Santa Claus problem. For the last problem, in which the objective is to minimize the difference between the maximum and minimum load, the optimal objective value may be zero and hence it is NP-hard to obtain any multiplicative approximation guarantee. For this class of problems we present additive approximation schemes for $h = p_{\max}$, the maximum processing time of the jobs. Our technical contribution is two-fold. First, we introduce a new relaxation based on integrally assigning slots to machines and fractionally assigning jobs to the slots (the slot-MILP). We identify structural properties of (near-)optimal solutions of the slot-MILP, which allow us to solve it efficiently, assuming that there are $O(1)$ different lower and upper bounds on the machine loads (which is the relevant setting for the three problems mentioned above). The second technical contribution is a local-search based algorithm which rounds a solution to the slot-MILP introducing an additive error on the target load intervals of at most $ε\cdot p_{\max}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源