论文标题
khovanov-lipshitz-sarkar同义类型,用于在增厚的较高属表面中的链接
Khovanov-Lipshitz-Sarkar homotopy type for links in thickened higher genus surfaces
论文作者
论文摘要
我们讨论了增厚表面中的链接。我们定义了Khovanov-Lipshitz-Sarkar稳定的同型类型和steenrod Square,用于与属属$> 1 $的增厚表面中的链接的同位khovanov同源性。 除非另有说明,否则表面是指封闭式表面。当然,表面可能是或可能不是球体。增厚的表面是指表面和间隔的产物歧管。增厚表面中的链接(分别为3个manifold)是指增厚表面(分别为3个manifold)的亚体,该表与圆圈的分离集合。 我们的Khovanov-Lipshitz-Sarkar稳定同型类型和我们在浓厚的表面上的链路链接$> 1 $要比同型Khovanov同源性在增厚表面中的链路的同源性,属属,$> 1 $。 这是第一个有意义的Khovanov-Lipshitz-Sarkar稳定稳定的同型链接,在3个球员以外的3个manifolds中。 我们指出,我们的理论在圆环案例中具有不同的特征。
We discuss links in thickened surfaces. We define the Khovanov-Lipshitz-Sarkar stable homotopy type and the Steenrod square for the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. A surface means a closed oriented surface unless otherwise stated. Of course, a surface may or may not be the sphere. A thickened surface means a product manifold of a surface and the interval. A link in a thickened surface (respectively, a 3-manifold) means a submanifold of a thickened surface (respectively, a 3-manifold) which is diffeomorphic to a disjoint collection of circles. Our Khovanov-Lipshitz-Sarkar stable homotopy type and our Steenrod square of links in thickened surfaces with genus$>1$ are stronger than the homotopical Khovanov homology of links in thickened surfaces with genus$>1$. It is the first meaningful Khovanov-Lipshitz-Sarkar stable homotopy type of links in 3-manifolds other than the 3-sphere. We point out that our theory has a different feature in the torus case.