论文标题
Coxeter组合和球形舒伯特几何形状
Coxeter combinatorics and spherical Schubert geometry
论文作者
论文摘要
对于有限的Coxeter系统及其图节点的子集,我们定义球形元素(Coxeter元素的概括)。对于Weyl群而言,构想的球形元素指数schubert schubert品种g/b,对于levi亚组的作用是球形的。我们证明了采用项的组合和R. Avdeev-A的作品的猜想。 Petukhov,M。Can-r。 Hodges,R。Hodges-V。 Lakshmibai,P。Karuppuchamy,P。Magyar-J。 Weyman-A。 Zelevinsky,N。Perrin,J。Stembridge和B. Tenner。在A型中,我们与A. lascoux-M.-P。的关键多项式建立了联系。 Schützenberger,代数组合学中的多样性且多样性和分裂对称性。因此,我们调用了A. Kohnert的定理,V。Reiner-M。 Shimozono和C. Ross-A。 yong。
For a finite Coxeter system and a subset of its diagram nodes, we define spherical elements (a generalization of Coxeter elements). Conjecturally, for Weyl groups, spherical elements index Schubert varieties in a flag manifold G/B that are spherical for the action of a Levi subgroup. We evidence the conjecture, employing the combinatorics of Demazure modules, and work of R. Avdeev-A. Petukhov, M. Can-R. Hodges, R. Hodges-V. Lakshmibai, P. Karuppuchamy, P. Magyar-J. Weyman-A. Zelevinsky, N. Perrin, J. Stembridge, and B. Tenner. In type A, we establish connections with the key polynomials of A. Lascoux- M.-P. Schützenberger, multiplicity-freeness, and split-symmetry in algebraic combinatorics. Thereby, we invoke theorems of A. Kohnert, V. Reiner-M. Shimozono, and C. Ross-A. Yong.