论文标题
Schrijver图的边缘临界子图II:一般情况
Edge-critical subgraphs of Schrijver graphs II: The general case
论文作者
论文摘要
我们给出了$(N-2K+2)$的简单组合描述 - Schrijver Graph $ \ MATHRM {sg}(n,k)$的色度边缘临界子图,本身本身是诱导的tertex-Criencation-Crigital the Kneser Graph $ \ MATHRM {kg}(kg}(kg}(n,k))$。这扩展了[J.组合。理论ser。 b 144(2020)191--196]达到$ k $的所有值,并从1970年代开始升高洛瓦斯(Lovász)和施里杰夫(Schrijver)的经典结果。
We give a simple combinatorial description of an $(n-2k+2)$-chromatic edge-critical subgraph of the Schrijver graph $\mathrm{SG}(n,k)$, itself an induced vertex-critical subgraph of the Kneser graph $\mathrm{KG}(n,k)$. This extends the main result of [J. Combin. Theory Ser. B 144 (2020) 191--196] to all values of $k$, and sharpens the classical results of Lovász and Schrijver from the 1970s.