论文标题

自动估计:无监督的分割和在现场图像中的器官计数

AutoCount: Unsupervised Segmentation and Counting of Organs in Field Images

论文作者

Ubbens, Jordan, Ayalew, Tewodros, Shirtliffe, Steve, Josuttes, Anique, Pozniak, Curtis, Stavness, Ian

论文摘要

计数植物器官(例如户外图像中的头部或流苏)是植物表型中流行的基准计算机视觉任务,此前曾在文献中使用最先进的监督深度学习技术在文献中进行了研究。但是,野外图像中器官的注释是耗时的,容易出现错误。在本文中,我们提出了一种完全无监督的技术来计算诸如植物器官之类的密集物体。我们使用基于卷积网络的无监督分割方法,然后采用两个事后优化步骤。该提出的技术显示出在高粱(S. bicolor)和小麦(T. aestivum)中的一系列器官计数任务上提供竞争性计数性能,而没有依赖数据集的调整或修改。

Counting plant organs such as heads or tassels from outdoor imagery is a popular benchmark computer vision task in plant phenotyping, which has been previously investigated in the literature using state-of-the-art supervised deep learning techniques. However, the annotation of organs in field images is time-consuming and prone to errors. In this paper, we propose a fully unsupervised technique for counting dense objects such as plant organs. We use a convolutional network-based unsupervised segmentation method followed by two post-hoc optimization steps. The proposed technique is shown to provide competitive counting performance on a range of organ counting tasks in sorghum (S. bicolor) and wheat (T. aestivum) with no dataset-dependent tuning or modifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源