论文标题
使用空腔宏伟的磁磁球纠缠着两个大型铁磁球的振动模式
Entangling the vibrational modes of two massive ferromagnetic spheres using cavity magnomechanics
论文作者
论文摘要
我们提出了一个方案,以纠缠在双腔宏伟的雄伟系统中两个大型铁磁球的振动声子模式。在每个腔体中,微波腔模式通过磁性偶极相互作用将磁珠模式(自旋波)耦合到磁通模式(自旋波),后者通过非线性磁磁性相互作用将进一步的偶联与铁磁球的变形声子模式。我们表明,通过直接使用红细胞的微波场驱动磁通模式,可以实现磁机械抗螺旋体工艺,可以实现腔体 - 刺激状态 - 状态 - S-wap相互作用。因此,如果两个空腔由两种模板挤压真空场进一步驱动,则驱动场的量子相关性依次将其转移到两个镁模式中,然后转移到两个声子模式下,即,两个铁磁球被遥不可及。我们的工作表明,空腔宏伟的系统允许与其他方案相比,以比目前可能更庞大的规模制备量子纠缠状态。
We present a scheme to entangle the vibrational phonon modes of two massive ferromagnetic spheres in a dual-cavity magnomechanical system. In each cavity, a microwave cavity mode couples to a magnon mode (spin wave) via the magnetic dipole interaction, and the latter further couples to a deformation phonon mode of the ferromagnetic sphere via a nonlinear magnetostrictive interaction. We show that by directly driving the magnon mode with a red-detuned microwave field to activate the magnomechanical anti-Stokes process a cavity-magnon-phonon state-swap interaction can be realized. Therefore, if the two cavities are further driven by a two-mode squeezed vacuum field, the quantum correlation of the driving fields is successively transferred to the two magnon modes and subsequently to the two phonon modes, i.e., the two ferromagnetic spheres become remotely entangled. Our work demonstrates that cavity magnomechanical systems allow to prepare quantum entangled states at a more massive scale than currently possible with other schemes.