论文标题

DVI:深度指导视频介绍自动驾驶

DVI: Depth Guided Video Inpainting for Autonomous Driving

论文作者

Liao, Miao, Lu, Feixiang, Zhou, Dingfu, Zhang, Sibo, Li, Wei, Yang, Ruigang

论文摘要

为了在自动驾驶中获取清晰的街道视图和照片现实主义模拟,我们提出了一种自动视频介绍算法,可以在深度/点云的指导下从视频中删除交通代理并综合缺失区域。通过从缝合点云中构建密集的3D地图,视频中的帧通过此常见的3D地图几何相关。为了填充框架中的目标镶嵌区域,可以直接将像素从其他帧转换为当前框架的遮挡正确。此外,我们能够通过3D Point Cloud注册融合多个视频,从而可以使用多个源视频对目标视频进行绘制。动机是解决长期遮挡问题,在整个视频中从未看到遮挡区域。据我们所知,我们是第一个融合多个视频进行视频介绍的视频的人。为了验证我们的方法的有效性,我们在真正的城市道路环境中建立了一个大型的研究数据集,其中包含同步图像和激光雷达数据,包括许多挑战场景,例如长时间的闭塞。实验结果表明,所提出的方法的表现优于所有标准的最先进方法,尤其是RMSE(根平方误差)已减少了约13%。

To get clear street-view and photo-realistic simulation in autonomous driving, we present an automatic video inpainting algorithm that can remove traffic agents from videos and synthesize missing regions with the guidance of depth/point cloud. By building a dense 3D map from stitched point clouds, frames within a video are geometrically correlated via this common 3D map. In order to fill a target inpainting area in a frame, it is straightforward to transform pixels from other frames into the current one with correct occlusion. Furthermore, we are able to fuse multiple videos through 3D point cloud registration, making it possible to inpaint a target video with multiple source videos. The motivation is to solve the long-time occlusion problem where an occluded area has never been visible in the entire video. To our knowledge, we are the first to fuse multiple videos for video inpainting. To verify the effectiveness of our approach, we build a large inpainting dataset in the real urban road environment with synchronized images and Lidar data including many challenge scenes, e.g., long time occlusion. The experimental results show that the proposed approach outperforms the state-of-the-art approaches for all the criteria, especially the RMSE (Root Mean Squared Error) has been reduced by about 13%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源