论文标题

riemannian指标空间的分解,与边界紧凑

Decompositions of the space of Riemannian metrics on a compact manifold with boundary

论文作者

Hamanaka, Shota

论文摘要

在本文中,对于带有非空边界的紧凑型歧管$ m $,我们给出了一个type型分解定理以及一个ebin型切片定理,用于所有Riemannian Mentrics在$ M $上的空间。作为推论,我们给出了相对爱因斯坦指标的特征。

In this paper, for a compact manifold $M$ with non-empty boundary, we give a Koiso-type decomposition theorem, as well as an Ebin-type slice theorem, for the space of all Riemannian metrics on $M$ endowed with a fixed conformal class on the boundary. As a corollary, we give a characterization of relative Einstein metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源