论文标题
riemannian指标空间的分解,与边界紧凑
Decompositions of the space of Riemannian metrics on a compact manifold with boundary
论文作者
论文摘要
在本文中,对于带有非空边界的紧凑型歧管$ m $,我们给出了一个type型分解定理以及一个ebin型切片定理,用于所有Riemannian Mentrics在$ M $上的空间。作为推论,我们给出了相对爱因斯坦指标的特征。
In this paper, for a compact manifold $M$ with non-empty boundary, we give a Koiso-type decomposition theorem, as well as an Ebin-type slice theorem, for the space of all Riemannian metrics on $M$ endowed with a fixed conformal class on the boundary. As a corollary, we give a characterization of relative Einstein metrics.