论文标题
在lusternik-schnirelmann类别和拓扑复杂性上,无k平等流形
On Lusternik-Schnirelmann category and topological complexity of no k-equal manifolds
论文作者
论文摘要
我们计算lusternik-schnirelmann类别和无$ k $ equal-quarolds $ m^{(k)} _ d(n)$的拓扑复杂性,对于$ d $,$ k $和$ n $的某些值。这包括$ m^{(k)} _ d(n)$的实例。我们计算中的关键成分是Dobrinskaya和Turchin所述的同种学环$ H^*(M^{(k)} _ d(n))$的知识。通过使用阻塞理论技术进行微调。
We compute the Lusternik-Schnirelmann category and the topological complexity of no $k$-equal manifolds $M^{(k)}_d(n)$ for certain values of $d$, $k$ and $n$. This includes instances where $M^{(k)}_d(n)$ is known to be rationally non-formal. The key ingredient in our computations is the knowledge of the cohomology ring $H^*(M^{(k)}_d(n))$ as described by Dobrinskaya and Turchin. A fine tuning comes from the use of obstruction theory techniques.