论文标题

DACS:通过跨域混合采样的域适应

DACS: Domain Adaptation via Cross-domain Mixed Sampling

论文作者

Tranheden, Wilhelm, Olsson, Viktor, Pinto, Juliano, Svensson, Lennart

论文摘要

基于卷积神经网络的语义分割模型最近显示了许多应用程序的出色性能。但是,这些模型通常在应用于新域时概括不佳,尤其是从合成到真实数据时。在本文中,我们解决了无监督的域适应性(UDA)的问题,该问题试图训练来自一个域(源域)的标记数据,并同时从感兴趣的域(目标域)中从未标记的数据中学习。现有方法通过在伪标签上为这些未标记的图像进行培训,从而获得了成功。已经提出了多种技术来减轻由域移动引起的低质量伪标记,并取得不同程度的成功。我们提出了DAC:通过跨域混合采样的域适应,该域将来自两个域的图像与相应的标签和伪标签混合在一起。除标记的数据本身外,还对这些混合样品进行了训练。我们通过将GTA5的最新结果获得CityScapes来证明我们的解决方案的有效性,这是UDA的常见合成到真实的语义分割基准。

Semantic segmentation models based on convolutional neural networks have recently displayed remarkable performance for a multitude of applications. However, these models typically do not generalize well when applied on new domains, especially when going from synthetic to real data. In this paper we address the problem of unsupervised domain adaptation (UDA), which attempts to train on labelled data from one domain (source domain), and simultaneously learn from unlabelled data in the domain of interest (target domain). Existing methods have seen success by training on pseudo-labels for these unlabelled images. Multiple techniques have been proposed to mitigate low-quality pseudo-labels arising from the domain shift, with varying degrees of success. We propose DACS: Domain Adaptation via Cross-domain mixed Sampling, which mixes images from the two domains along with the corresponding labels and pseudo-labels. These mixed samples are then trained on, in addition to the labelled data itself. We demonstrate the effectiveness of our solution by achieving state-of-the-art results for GTA5 to Cityscapes, a common synthetic-to-real semantic segmentation benchmark for UDA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源