论文标题

动态几何独立集

Dynamic Geometric Independent Set

论文作者

Bhore, Sujoy, Cardinal, Jean, Iacono, John, Koumoutsos, Grigorios

论文摘要

我们在几种类型的几何对象上提出了最大独立集问题的完全动态近似算法:实际线上的间隔,在平面中的任意轴对准正方形以及与轴对齐的$ D $ d $维二维超振管。 众所周知,可以在$ o(n \ log n)$时间中找到$ n $间隔的最大独立集,而它已经是一组单位正方形的\ textsf {np} -hard。此外,在许多重要的图形家族中,这个问题是不合适的,但是对于一组任意的伪盘而言,\ textsf {ptas}接受了一个。因此,计算几何形状中的一个基本问题是,是否可以在一组动态几何对象,每个插入或删除的真正肌联盟时间中维持近似的最大独立集。在这项工作中,我们以肯定的间隔,正方形和超管的方式回答了这个问题。 首先,我们表明,对于$(1+ \ varepsilon)$,可以使用对数最差的更新时间来维持近似的最大独立集。这是通过使用每个更新恒定数量的恒定交换来维护本地最佳解决方案来实现的。 然后,我们展示如何使用间隔结构来设计数据结构,以维持平面中的预期恒定因子近似于轴对准的正方形的最大独立集合,并具有polyrogarithmic amortized更新时间。我们的方法概括为$ d $二维的超启发,提供了$ O(4^d)$ - 近似值,并带有Polyrogarithmic更新时间。 这些是任何一组动态任意大小几何对象的第一个近似算法;先前的结果需要有限的尺寸比以获得多组刻度更新时间。此外,众所周知,我们的正方形(和超振烟)的结果不能改善到$(1+ \ varepsilon)$ - 近似值,并且具有相同的更新时间。

We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned $d$-dimensional hypercubes. It is known that a maximum independent set of a collection of $n$ intervals can be found in $O(n\log n)$ time, while it is already \textsf{NP}-hard for a set of unit squares. Moreover, the problem is inapproximable on many important graph families, but admits a \textsf{PTAS} for a set of arbitrary pseudo-disks. Therefore, a fundamental question in computational geometry is whether it is possible to maintain an approximate maximum independent set in a set of dynamic geometric objects, in truly sublinear time per insertion or deletion. In this work, we answer this question in the affirmative for intervals, squares and hypercubes. First, we show that for intervals a $(1+\varepsilon)$-approximate maximum independent set can be maintained with logarithmic worst-case update time. This is achieved by maintaining a locally optimal solution using a constant number of constant-size exchanges per update. We then show how our interval structure can be used to design a data structure for maintaining an expected constant factor approximate maximum independent set of axis-aligned squares in the plane, with polylogarithmic amortized update time. Our approach generalizes to $d$-dimensional hypercubes, providing a $O(4^d)$-approximation with polylogarithmic update time. Those are the first approximation algorithms for any set of dynamic arbitrary size geometric objects; previous results required bounded size ratios to obtain polylogarithmic update time. Furthermore, it is known that our results for squares (and hypercubes) cannot be improved to a $(1+\varepsilon)$-approximation with the same update time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源