论文标题
表面等离子体共振生物传感器的优化用于分析脂质分子
Optimization of Surface Plasmon Resonance Biosensor for Analysis of Lipid Molecules
论文作者
论文摘要
表面等离子体共振(SPR)是用于实时无标签检测的重要生物传感技术。但是,优化传感器配置的各种参数是有效且高度敏感的感应是至关重要的。为此,我们专注于优化两个不同的SPR结构 - 基本的Kretschmann配置和狭窄的凹槽光栅。我们的分析旨在检测两种不同类型的脂质,称为磷脂和eggyolk,它们用作分析物(传感层),两种不同类型的蛋白质(即毛pophan和牛血清白蛋白(BSA))用作配体(结合位点)。对于这两种配置,我们研究了所有可能的脂质 - 蛋白组合,以了解各种参数对灵敏度,最小反射率和全宽度最大最大宽度(FWHM)的影响。脂质是细胞膜的结构构建块,病毒和细菌对这些层的突变是我们体内许多疾病的主要原因之一。因此,提高SPR传感器的性能以检测脂质的很小变化具有巨大的意义。我们使用有限差分时间域(FDTD)技术来执行定量分析以获得优化的结构。我们发现,当脂质浓度增加时,灵敏度会增加,并且当金属和脂质层厚度分别为45 nm和30 nm时,磷脂和色氨酸组合的最高(21.95度/RIU)。但是,金属层厚度不会引起灵敏度的任何显着变化,但是随着它的增加到50 nm,最小反射率和全宽度最大(FWHM)降低到最低。如果存在狭窄的凹槽发间结构,则广泛的波长可以产生SPR,并且对于在1411 nm的共振波长下,灵敏度最高(900nm/riU)对于10 nm凹槽宽度和70 nm凹槽高度的构型最高(900nm/riU)。
Surface Plasmon Resonance (SPR) is an important bio-sensing technique for real-time label-free detection. However, it is pivotal to optimize various parameters of the sensor configuration for efficient and highly sensitive sensing. To that effect, we focus on optimizing two different SPR structures -- the basic Kretschmann configuration and narrow groove grating. Our analysis aims to detect two different types of lipids known as phospholipid and eggyolk, which are used as analyte (sensing layer) and two different types of proteins namely tryptophan and bovine serum albumin (BSA) are used as ligand (binding site). For both the configurations, we investigate all possible lipid-protein combinations to understand the effect of various parameters on sensitivity, minimum reflectivity and full width half maximum (FWHM). Lipids are the structural building block of cell membranes and mutation of these layers by virus and bacteria is one the prime reasons of many diseases in our body. Hence, improving the performance of a SPR sensor to detect very small change in lipid holds immense significance. We use finite-difference time-domain (FDTD) technique to perform quantitative analysis to get an optimized structure. We find that sensitivity increases when lipid concentration is increased and it is the highest (21.95 degree/RIU) for phospholipid and tryptophan combination when metal and lipid layer thickness are 45 nm and 30 nm respectively. However, metal layer thickness does not cause any significant variation in sensitivity, but as it increases to 50 nm, minimum reflectivity and full width half maximum (FWHM) decreases to the lowest. In case of narrow groove grating structure, broad range of wavelengths can generate SPR and the sensitivity is highest (900nm/RIU) for a configuration of 10 nm groove width and 70 nm groove height at a resonance wavelength of 1411 nm.