论文标题

加速3D深度学习与pytorch3d

Accelerating 3D Deep Learning with PyTorch3D

论文作者

Ravi, Nikhila, Reizenstein, Jeremy, Novotny, David, Gordon, Taylor, Lo, Wan-Yen, Johnson, Justin, Gkioxari, Georgia

论文摘要

深度学习显着改善了2D图像识别。扩展到3D可能会推进许多新的应用程序,包括自动驾驶汽车,虚拟和增强现实,创作3D内容,甚至改善2D识别。然而,尽管兴趣越来越大,但3D深度学习仍然相对不受欢迎。我们认为,这种差异中的一些是由于3D深度学习所涉及的工程挑战,例如有效处理异质数据并将图形操作重新定义为可区别。我们通过引入Pytorch3D(一个模块化,高效且可区分的操作员,用于3D深度学习)来应对这些挑战。它包括用于网格和点云的快速,模块化的可区分渲染器,从而实现了通过合成方法的分析。与其他可区分的渲染器相比,Pytorch3D更加模块化,更有效,使用户可以更轻松地扩展它,同时优雅地扩展到大型网眼和图像。我们将Pytorch3D运算符和渲染器与其他实现进行比较,并显示出明显的速度和内存改进。我们还使用pytorch3d来改善无监督的3D网格和点云预测的最先进,并从Shapenet上的2D图像进行预测。 Pytorch3d是开源的,我们希望它将有助于加速3D深度学习的研究。

Deep learning has significantly improved 2D image recognition. Extending into 3D may advance many new applications including autonomous vehicles, virtual and augmented reality, authoring 3D content, and even improving 2D recognition. However despite growing interest, 3D deep learning remains relatively underexplored. We believe that some of this disparity is due to the engineering challenges involved in 3D deep learning, such as efficiently processing heterogeneous data and reframing graphics operations to be differentiable. We address these challenges by introducing PyTorch3D, a library of modular, efficient, and differentiable operators for 3D deep learning. It includes a fast, modular differentiable renderer for meshes and point clouds, enabling analysis-by-synthesis approaches. Compared with other differentiable renderers, PyTorch3D is more modular and efficient, allowing users to more easily extend it while also gracefully scaling to large meshes and images. We compare the PyTorch3D operators and renderer with other implementations and demonstrate significant speed and memory improvements. We also use PyTorch3D to improve the state-of-the-art for unsupervised 3D mesh and point cloud prediction from 2D images on ShapeNet. PyTorch3D is open-source and we hope it will help accelerate research in 3D deep learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源