论文标题

Helmholtz-Hodge分解和条件结构功能的应用,探索预混合燃烧对火焰上游湍流的影响

Application of Helmholtz-Hodge decomposition and conditioned structure functions to exploring influence of premixed combustion on turbulence upstream of the flame

论文作者

Sabelnikov, Vladimir A., Lipatnikov, Andrei N., Nikitin, Nikolay, Nishiki, Shinnosuke, Hasegawa, Tatsuya

论文摘要

为了探索燃烧引起的热膨胀对湍流的影响,引入了一种新的研究方法。该方法包括共同应用Helmholtz-Hodge分解和条件结构函数来分析湍流速度场。该方法提供的机会是通过使用IT处理前面从两个统计上的1D,平面,完全发达的,弱动荡的,单步化学化学的直接数值仿真数据来证明的,这些预后火焰的特征是两个显着差异(7.52和2.50)的密度比,所有其他事物都大致相等。为了强调燃烧诱导的热膨胀对预混合火焰上游未燃烧混合物的湍流的影响,分析的重点放在两个点以未燃烧的混合物为条件的结构函数上。探测了两种分解技术,即(i)一种广泛使用的正交Helmholtz-Hodge分解和(ii)最近引入的天然helmholtz-hodge分解,探测为探测,其结果在计算领域的最大部分中获得的结果相似,除了附近的狭窄的动物界和外部界限附近。计算的结果表明,燃烧引起的热膨胀可以通过产生各向异性电位速度波动,其空间结构与未接入的湍流的空间结构有很大差异,从而可以显着改变预混合火焰上游未燃烧混合物的湍流。在高密度比的情况下,这种潜在速度波动的大小大于平均火焰刷最大的螺旋速度波动的大小。在低密度比的情况下,后一个幅度到处都更大,但是在平均火焰刷的中间,这两个幅度是可比的。

In order to explore the influence of combustion-induced thermal expansion on turbulence, a new research method is introduced. The method consists in jointly applying Helmholtz-Hodge decomposition and conditioned structure functions to analyzing turbulent velocity fields. Opportunities offered by the method are demonstrated by using it to process Direct Numerical Simulation data obtained earlier from two statistically 1D, planar, fully-developed, weakly turbulent, single-step-chemistry, premixed flames characterized by two significantly different (7.52 and 2.50) density ratios, with all other things being approximately equal. To emphasize the influence of combustion-induced thermal expansion on turbulent flow of unburned mixture upstream of a premixed flame, the focus of analysis is placed on structure functions conditioned to the unburned mixture in both points. Two decomposition techniques, i.e. (i) a widely used orthogonal Helmholtz-Hodge decomposition and (ii) a recently introduced natural Helmholtz-Hodge decomposition, are probed, with results obtained using them being similar in the largest part of the computational domain with the exception of narrow zones near the inlet and outlet boundaries. Computed results indicate that combustion-induced thermal expansion can significantly change turbulent flow of unburned mixture upstream of a premixed flame by generating anisotropic potential velocity fluctuations whose spatial structure differ substantially from spatial structure of the incoming turbulence. The magnitude of such potential velocity fluctuations is greater than the magnitude of the solenoidal velocity fluctuations in the largest part of the mean flame brush in the case of the high density ratio. In the case of the low density ratio, the latter magnitude is larger everywhere, but the two magnitudes are comparable in the middle of the mean flame brush.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源