论文标题
Pinneik:使用物理信息神经网络的艾科纳尔解决方案
PINNeik: Eikonal solution using physics-informed neural networks
论文作者
论文摘要
Eikonal方程在广泛的科学和工程学科中使用。在地震学中,它调节了诸如源定位,成像和反转等应用所需的地震波旅行时间。多年来,已经开发了几种数值算法来解决艾科纳尔方程。但是,这些方法需要进行大量修改,以纳入其他物理,例如各向异性,甚至可能针对某些复杂形式的Eikonal方程分解,需要近似方法。此外,在速度模型和/或源位置(尤其是在大型3D模型中)中的扰动需要重复计算时,它们会遭受计算瓶颈的困扰。在这里,我们提出了一种算法来基于物理信息神经网络(PINN)的新兴范式求解Eikonal方程。通过最大程度地减少通过强加Eikonal方程形成的损失函数,我们训练一个神经网络,以输出与基础偏微分方程一致的旅行时间。对于大多数感兴趣的应用,我们观察到足够高的旅行时间准确性。我们还展示了所提出的算法如何利用机器学习技术,例如转移学习和替代建模,以加快更新速度模型和源位置的旅行时间计算。此外,我们使用局部自适应激活函数和对损失函数中术语的自适应加权,以提高收敛速率和解决方案精度。我们还展示了该方法在融合培养基各向异性和自由地形地形时的灵活性,与需要显着算法修改的常规方法相比。拟议的Pinn Eikonal求解器的这些特性在获得地震学应用的灵活,有效的正向建模引擎方面非常需要。
The eikonal equation is utilized across a wide spectrum of science and engineering disciplines. In seismology, it regulates seismic wave traveltimes needed for applications like source localization, imaging, and inversion. Several numerical algorithms have been developed over the years to solve the eikonal equation. However, these methods require considerable modifications to incorporate additional physics, such as anisotropy, and may even breakdown for certain complex forms of the eikonal equation, requiring approximation methods. Moreover, they suffer from computational bottleneck when repeated computations are needed for perturbations in the velocity model and/or the source location, particularly in large 3D models. Here, we propose an algorithm to solve the eikonal equation based on the emerging paradigm of physics-informed neural networks (PINNs). By minimizing a loss function formed by imposing the eikonal equation, we train a neural network to output traveltimes that are consistent with the underlying partial differential equation. We observe sufficiently high traveltime accuracy for most applications of interest. We also demonstrate how the proposed algorithm harnesses machine learning techniques like transfer learning and surrogate modeling to speed up traveltime computations for updated velocity models and source locations. Furthermore, we use a locally adaptive activation function and adaptive weighting of the terms in the loss function to improve convergence rate and solution accuracy. We also show the flexibility of the method in incorporating medium anisotropy and free-surface topography compared to conventional methods that require significant algorithmic modifications. These properties of the proposed PINN eikonal solver are highly desirable in obtaining a flexible and efficient forward modeling engine for seismological applications.