论文标题

神经编码的神经架构具有局部错误信号,用于内存限制在线学习

Neuromodulated Neural Architectures with Local Error Signals for Memory-Constrained Online Continual Learning

论文作者

Madireddy, Sandeep, Yanguas-Gil, Angel, Balaprakash, Prasanna

论文摘要

在没有灾难性遗忘的情况下从传入的数据流进行连续学习的能力对于设计智能系统至关重要。许多现有的持续学习方法依赖于随机梯度下降及其变体。但是,这些算法必须实施各种策略,例如记忆缓冲或重播,以克服稳定,贪婪和短期记忆的随机梯度下降方法的众所周知的缺点。 为此,我们开发了一种具有生物学启发的轻质神经网络体系结构,该结构结合了本地学习和神经调节,以使数据流和在线学习能够进行输入处理。接下来,我们解决了通过实施转移金属学习未提前知道的任务的超参数选择的挑战:使用贝叶斯优化探索跨越多个本地学习规则及其超级参数的设计空间,我们在经典的单个任务在线学习中确定了高性能配置,我们将其转移到具有任务 - 触觉考虑的持续学习任务。 我们证明了方法对单个任务和持续学习设置的功效。对于单个任务学习设置,我们展示了MNIST,时尚MNIST和CIFAR-10数据集的其他本地学习方法优于其他本地学习方法。使用在单个任务学习设置中获得的高性能配置,我们在分裂过程中实现了较高的持续学习性能,而Split-Cifar-10数据与其他内存受限的学习方法相比,并匹配了最先进的基于内存密集型重录的方法的效果。

The ability to learn continuously from an incoming data stream without catastrophic forgetting is critical for designing intelligent systems. Many existing approaches to continual learning rely on stochastic gradient descent and its variants. However, these algorithms have to implement various strategies, such as memory buffers or replay, to overcome well-known shortcomings of stochastic gradient descent methods in terms of stability, greed, and short-term memory. To that end, we develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation to enable input processing over data streams and online learning. Next, we address the challenge of hyperparameter selection for tasks that are not known in advance by implementing transfer metalearning: using a Bayesian optimization to explore a design space spanning multiple local learning rules and their hyperparameters, we identify high performing configurations in classical single task online learning and we transfer them to continual learning tasks with task-similarity considerations. We demonstrate the efficacy of our approach on both single task and continual learning setting. For the single task learning setting, we demonstrate superior performance over other local learning approaches on the MNIST, Fashion MNIST, and CIFAR-10 datasets. Using high performing configurations metalearned in the single task learning setting, we achieve superior continual learning performance on Split-MNIST, and Split-CIFAR-10 data as compared with other memory-constrained learning approaches, and match that of the state-of-the-art memory-intensive replay-based approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源