论文标题

不可压缩的Navier-Stokes方程的多功能混合方法

Versatile Mixed Methods for the Incompressible Navier-Stokes Equations

论文作者

Chen, Xi, Williams, David M.

论文摘要

本着Truesdell&Toupin(1960)Truesdell&Toupin引入的“配置原理”的精神,我们使用了最初用于可压缩流的粘性应力张量的完整版本,而不是经典的不可压缩应力张量。在我们的方法中,对粘性应力项的无差约束并未在离散化之前执行。取而代之的是,我们的公式允许方案本身“选择”一种一致的方法来解释无差异的约束:即,在质量保护方程和应力张量tensor术语(在动量方程中)中,以一致的方式解释(或强制执行),以一致的方式解释(或强制执行)。此外,我们的方法保留了应力张量的原始对称特性,例如它的旋转不变性,并且在可压缩流的背景下保持身体正确。结果,我们的方法促进了多功能性和代码重用。在本文中,我们介绍了我们的方法,并为产生的有限元方案类别建立了一些重要的数学特性。更确切地说,对于不一定不一定散发的一般混合方法,我们确定了由完整的粘性双线性形式引起的新规范的存在。此后,我们证明了粘性双线性形式的固定性和对流三线性形式的半重新定性。此外,我们证明了通用方法的离散速度字段的L2稳定性,以及(通过扣除)H(DIV)合并方法。最后,我们运行一些数值实验来说明多功能混合方法的行为,并与常规的H(DIV)合并方案进行仔细的比较。

In the spirit of the "Principle of Equipresence" introduced by Truesdell & Toupin, The Classical Field Theories (1960), we use the full version of the viscous stress tensor which was originally derived for compressible flows, instead of the classical incompressible stress tensor. In our approach, the divergence-free constraint for the viscous stress term is not enforced ahead of discretization. Instead, our formulation allows the scheme itself to "choose" a consistent way to interpret the divergence-free constraint: i.e., the divergence-free constraint is interpreted (or enforced) in a consistent fashion in both the mass conservation equation and the stress tensor term (in the momentum equation). Furthermore, our approach preserves the original symmetrical properties of the stress tensor, e.g. its rotational invariance, and it remains physically correct in the context of compressible flows. As a result, our approach facilitates versatility and code reuse. In this paper, we introduce our approach and establish some important mathematical properties for the resulting class of finite element schemes. More precisely, for general mixed methods, which are not necessarily pointwise divergence-free, we establish the existence of a new norm induced by the full, viscous bilinear form. Thereafter, we prove the coercivity of the viscous bilinear form and the semi-coercivity of a convective trilinear form. In addition, we demonstrate L2-stability of the discrete velocity fields for the general class of methods and (by deduction) the H(div)-conforming methods. Finally, we run some numerical experiments to illustrate the behavior of the versatile mixed methods, and we make careful comparisons with a conventional H(div)-conforming scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源