论文标题

通过增强联合可预测性结合任务预测指标

Combining Task Predictors via Enhancing Joint Predictability

论文作者

Kim, Kwang In, Richardt, Christian, Chang, Hyung Jin

论文摘要

预测变量组合旨在根据潜在相关任务的(参考)预测指标改善学习任务的(目标)预测指标,而无需访问单个预测因子的内部。我们提出了一种新的预测指标组合算法,该算法通过i)根据参考的能力来预测目标的能力来改善目标,ii)加强这种估计的相关性。与仅利用目标与每个参考之间的成对关系的现有预测组合方法不同,从而忽略了参考文献之间的潜在有用的依赖性,我们的算法通过采用贝叶斯框架来共同评估所有参考文献的相关性。这还提供了一种严格的方式来自动选择相关的参考。根据视觉属性排名和多类分类方案的七个现实世界数据集的实验,我们证明我们的算法提供了显着的性能增益,并扩大了现有预测器组合方法的应用范围。

Predictor combination aims to improve a (target) predictor of a learning task based on the (reference) predictors of potentially relevant tasks, without having access to the internals of individual predictors. We present a new predictor combination algorithm that improves the target by i) measuring the relevance of references based on their capabilities in predicting the target, and ii) strengthening such estimated relevance. Unlike existing predictor combination approaches that only exploit pairwise relationships between the target and each reference, and thereby ignore potentially useful dependence among references, our algorithm jointly assesses the relevance of all references by adopting a Bayesian framework. This also offers a rigorous way to automatically select only relevant references. Based on experiments on seven real-world datasets from visual attribute ranking and multi-class classification scenarios, we demonstrate that our algorithm offers a significant performance gain and broadens the application range of existing predictor combination approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源