论文标题

将定向定理调整为FPT算法

Adapting the Directed Grid Theorem into an FPT Algorithm

论文作者

Campos, Victor, Lopes, Raul, Maia, Ana Karolinna, Sau, Ignasi

论文摘要

Robertson和Seymour的网格定理[JCTB,1986]是结构图理论领域中最重要的工具之一,在无向图的算法设计中发现了许多应用。 Johnson等人猜想了Digraphs中网格定理的类似版本。 [JCTB,2001],由Kawarabayashi和Kreutzer [Stoc,2015]证明。就是说,他们表明有一个功能$ f(k)$,以至于每个有向树宽度至少$ f(k)$包含一个尺寸$ k $的圆柱形网格作为蝴蝶小调,并表示可以将它们的证明变成XP算法,并带有一个较大的蝴蝶来构建较大的个不通,或者构建了一个较大的个不通的效应。在本文中,我们将Kawarabayashi和Kreutzer证明的一些步骤调整为将此XP算法改进到FPT算法中。为此,我们的主要技术贡献是两个fpt算法,其中包括参数$ k $。第一个要么产生宽度$ 3K-2 $的树木分解,要么在Digraph $ d $中找到订单$ k $的天堂,从而改善了Johnson等人的Arboreal Decompositions的原始结果。第二种算法在大型有向树宽度的digraph $ d $ d $中找到了一组链接的订单$ k $。作为证明这些结果的工具,我们展示了如何解决给定的顶点$ t $ fpt时间的均值$ | t | $的问题的通用版本的问题,我们认为这是其自身利益的结果。

The Grid Theorem of Robertson and Seymour [JCTB, 1986], is one of the most important tools in the field of structural graph theory, finding numerous applications in the design of algorithms for undirected graphs. An analogous version of the Grid Theorem in digraphs was conjectured by Johnson et al. [JCTB, 2001], and proved by Kawarabayashi and Kreutzer [STOC, 2015]. Namely, they showed that there is a function $f(k)$ such that every digraph of directed tree-width at least $f(k)$ contains a cylindrical grid of size $k$ as a butterfly minor and stated that their proof can be turned into an XP algorithm, with parameter $k$, that either constructs a decomposition of the appropriate width, or finds the claimed large cylindrical grid as a butterfly minor. In this paper, we adapt some of the steps of the proof of Kawarabayashi and Kreutzer to improve this XP algorithm into an FPT algorithm. Towards this, our main technical contributions are two FPT algorithms with parameter $k$. The first one either produces an arboreal decomposition of width $3k-2$ or finds a haven of order $k$ in a digraph $D$, improving on the original result for arboreal decompositions by Johnson et al. The second algorithm finds a well-linked set of order $k$ in a digraph $D$ of large directed tree-width. As tools to prove these results, we show how to solve a generalized version of the problem of finding balanced separators for a given set of vertices $T$ in FPT time with parameter $|T|$, a result that we consider to be of its own interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源