论文标题

基于图的社会关系推理

Graph-Based Social Relation Reasoning

论文作者

Li, Wanhua, Duan, Yueqi, Lu, Jiwen, Feng, Jianjiang, Zhou, Jie

论文摘要

人类从根本上是社交的 - 我们通常会根据与他人的关系来组织我们的社会生活。了解来自图像的社会关系对于智能系统(例如社交聊天机器人和个人助理)具有很大的潜力。在本文中,我们提出了一种更简单,更快,更准确的方法,称为图形关系推理网络(GR2N),以进行社会关系识别。与现有的方法不同的方法不同,我们的方法在图像上独立处理所有社会关系,我们的方法考虑了通过构建社会关系图的共同推断关系的范式。此外,提议的GR2N构建了几个虚拟关系图,以明确掌握不同类型的社会关系之间的强大逻辑约束。实验结果表明,我们的方法生成了合理且一致的社会关系图,并提高了准确性和效率的性能。

Human beings are fundamentally sociable -- that we generally organize our social lives in terms of relations with other people. Understanding social relations from an image has great potential for intelligent systems such as social chatbots and personal assistants. In this paper, we propose a simpler, faster, and more accurate method named graph relational reasoning network (GR2N) for social relation recognition. Different from existing methods which process all social relations on an image independently, our method considers the paradigm of jointly inferring the relations by constructing a social relation graph. Furthermore, the proposed GR2N constructs several virtual relation graphs to explicitly grasp the strong logical constraints among different types of social relations. Experimental results illustrate that our method generates a reasonable and consistent social relation graph and improves the performance in both accuracy and efficiency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源