论文标题

表情符号预测:扩展和基准测试

Emoji Prediction: Extensions and Benchmarking

论文作者

Ma, Weicheng, Liu, Ruibo, Wang, Lili, Vosoughi, Soroush

论文摘要

表情符号是一种简洁的语言形式,可以表达具体的含义,情感和意图。表情符号还带有可以用来更好地理解交流意图的信号。它们已成为我们日常生活中无处不在的一部分,使其成为理解用户生成内容的重要组成部分。表情符号预测任务旨在预测与文本相关的适当表情符号。通过表情符号预测,模型可以学习书面文本的沟通意图的丰富表示。尽管对表情符号预测任务的现有研究集中在与某些情绪紧密相关的表情符号类型的一小部分,但这种设置过度简化了任务,并浪费了表情符号的表现力。在本文中,我们将表情符号预测任务的现有设置扩展到包括一组更丰富的表情符号,并允许在任务上进行多标签分类。我们提出了基于变压器网络的多级和多标签表情符号预测的新型模型。我们还使用启发式方法从Twitter构建了多个表情符号预测数据集。 BERT模型在所有设置下都在我们所有数据集上实现最先进的性能,准确性的相对提高了27.21%,至236.36%,与先前的“前五名”相比,TOP-5准确性的2.01%至88.28%,F-1分数为65.19%至346.79%。我们的结果表明,基于深层变压器模型对表情符号预测任务的功效。我们还在https://github.com/hikari-nyu/emoji_prediction_datasets_mms上发布数据集,以供未来的研究人员使用。

Emojis are a succinct form of language which can express concrete meanings, emotions, and intentions. Emojis also carry signals that can be used to better understand communicative intent. They have become a ubiquitous part of our daily lives, making them an important part of understanding user-generated content. The emoji prediction task aims at predicting the proper set of emojis associated with a piece of text. Through emoji prediction, models can learn rich representations of the communicative intent of the written text. While existing research on the emoji prediction task focus on a small subset of emoji types closely related to certain emotions, this setting oversimplifies the task and wastes the expressive power of emojis. In this paper, we extend the existing setting of the emoji prediction task to include a richer set of emojis and to allow multi-label classification on the task. We propose novel models for multi-class and multi-label emoji prediction based on Transformer networks. We also construct multiple emoji prediction datasets from Twitter using heuristics. The BERT models achieve state-of-the-art performances on all our datasets under all the settings, with relative improvements of 27.21% to 236.36% in accuracy, 2.01% to 88.28% in top-5 accuracy and 65.19% to 346.79% in F-1 score, compared to the prior state-of-the-art. Our results demonstrate the efficacy of deep Transformer-based models on the emoji prediction task. We also release our datasets at https://github.com/hikari-NYU/Emoji_Prediction_Datasets_MMS for future researchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源