论文标题

随机多极驾驶:通过光谱工程加热速度缓慢

Random multipolar driving: tunably slow heating through spectral engineering

论文作者

Zhao, Hongzheng, Mintert, Florian, Moessner, Roderich, Knolle, Johannes

论文摘要

驱动的量子系统可能会在静态系统中实现新现象,但是驱动引起的加热可以限制这些持续存在的时间尺度。我们研究了由$ n- $多极相关的随机序列驱动的相互作用量子多体系统的加热,对应于多项式抑制的低频频谱。对于$ n \ geq1 $,我们找到了一个预先的制度,其寿命随着驾驶速度而增长,指数$ {2n+1} $。基于费米的黄金法则的简单理论解释了这种行为。 Quasiperiodic thue-morse序列对应于$ n \ to \ infty $限制,因此表现出指定长期的长期以来。尽管驱动器中没有周期性,尽管其最终的热死亡,但仍可以托管多功能非平衡阶段,我们以随机的多极时间晶体进行了说明。

Driven quantum systems may realize novel phenomena absent in static systems, but driving-induced heating can limit the time-scale on which these persist. We study heating in interacting quantum many-body systems driven by random sequences with $n-$multipolar correlations, corresponding to a polynomially suppressed low frequency spectrum. For $n\geq1$, we find a prethermal regime, the lifetime of which grows algebraically with the driving rate, with exponent ${2n+1}$. A simple theory based on Fermi's golden rule accounts for this behaviour. The quasiperiodic Thue-Morse sequence corresponds to the $n\to \infty$ limit, and accordingly exhibits an exponentially long-lived prethermal regime. Despite the absence of periodicity in the drive, and in spite of its eventual heat death, the prethermal regime can host versatile non-equilibrium phases, which we illustrate with a random multipolar discrete time crystal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源