论文标题
阿隆 - 塔西(Tarsi)的直接产品数量
Alon -- Tarsi numbers of direct products
论文作者
论文摘要
我们在笛卡尔产品的图形多项式的系数上提供了一个通用框架。作为必然的,我们证明,如果$ g =(v,e)$是一个图表,顶点$ 2D(v),v $ in v $,以及图polyenmial $ \ prod _ {(i,j)\ in E}(i,j)\ in E}(x_j-j-x_i)$包含一个“几乎中央”单nomial(nodof fors________________________________ $ | c_v-d(v)| \ leqslant 1 $ for in v $中的所有$ v \),然后笛卡尔产品$ g \ square c_ {2n} $ is $(d(\ cdot)+2)$ - 可chosable。
We provide a general framework on the coefficients of the graph polynomials of graphs which are Cartesian products. As a corollary, we prove that if $G=(V,E)$ is a graph with degrees of vertices $2d(v), v\in V$, and the graph polynomial $\prod_{(i,j)\in E} (x_j-x_i)$ contains an "almost central" monomial (that means a monomial $\prod_v x_v^{c_v}$, where $|c_v-d(v)|\leqslant 1$ for all $v\in V$), then the Cartesian product $G\square C_{2n}$ is $(d(\cdot)+2)$-choosable.