论文标题
关于及时谎言代数的整合
On the integration of transitive Lie algebroids
论文作者
论文摘要
我们重新审查了将Lie代数$ A \ rightarrow m $集成到Lie groupoids $ g \ rightrightarrows m $的问题,因为特殊情况是lie algebroid $ a $是瞬息万变的。我们可以在这种情况下对Crainic-Fernandes障碍物进行几何解释,并且每当这些障碍物消失时,整合的明确结构。我们还指出了这种方法的扩展为常规谎言代数。
We revisit the problem of integrating Lie algebroids $A\Rightarrow M$ to Lie groupoids $G\rightrightarrows M$, for the special case that the Lie algebroid $A$ is transitive. We obtain a geometric explanation of the Crainic-Fernandes obstructions for this situation, and an explicit construction of the integration whenever these obstructions vanish. We also indicate an extension of this approach to regular Lie algebroids.