论文标题
Udbnet:通过对抗游戏无监督的文档二进制网络
UDBNET: Unsupervised Document Binarization Network via Adversarial Game
论文作者
论文摘要
降级的文档图像二进化是文档图像分析领域中最具挑战性的任务之一。在本文中,我们通过引入三人Min-Max对抗游戏,提出了一种新颖的文档图像二进制方法。我们假设我们没有任何配对训练数据,我们将在无监督的设置中训练网络。在我们的方法中,对抗性纹理增强网络(Atanet)首先将降解的参考图像的纹理叠加在干净的图像上。后来,干净的图像及其生成的退化版本构成了伪配对数据,该伪数据用于训练无监督的文档二进制网络(UDBNET)。遵循这种方法,我们将文档二进制数据集放大了,因为它生成具有相同内容功能但文本功能不同的多个图像。然后将这些生成的嘈杂图像馈入Udbnet,以恢复干净的版本。联合歧视者是我们三人游戏Min-Max对手游戏的第三名,试图搭配Atanet和Udbnet。当Atanet建模的分布和Udbnet随着时间的流逝,三人游戏的Min-Max对抗游戏停止了。因此,关节鉴别器强制执行UDBNET在实际退化的图像上表现更好。实验结果表明,在广泛使用的DIBCO数据集上,所提出的模型比现有的最新算法具有出色的性能。拟议系统的源代码可在https://github.com/virobo-15/udbnet上公开获得。
Degraded document image binarization is one of the most challenging tasks in the domain of document image analysis. In this paper, we present a novel approach towards document image binarization by introducing three-player min-max adversarial game. We train the network in an unsupervised setup by assuming that we do not have any paired-training data. In our approach, an Adversarial Texture Augmentation Network (ATANet) first superimposes the texture of a degraded reference image over a clean image. Later, the clean image along with its generated degraded version constitute the pseudo paired-data which is used to train the Unsupervised Document Binarization Network (UDBNet). Following this approach, we have enlarged the document binarization datasets as it generates multiple images having same content feature but different textual feature. These generated noisy images are then fed into the UDBNet to get back the clean version. The joint discriminator which is the third-player of our three-player min-max adversarial game tries to couple both the ATANet and UDBNet. The three-player min-max adversarial game stops, when the distributions modelled by the ATANet and the UDBNet align to the same joint distribution over time. Thus, the joint discriminator enforces the UDBNet to perform better on real degraded image. The experimental results indicate the superior performance of the proposed model over existing state-of-the-art algorithm on widely used DIBCO datasets. The source code of the proposed system is publicly available at https://github.com/VIROBO-15/UDBNET.