论文标题

代数分支程序和分层的下限

Lower Bounds of Algebraic Branching Programs and Layerization

论文作者

Engels, Christian

论文摘要

在本文中,我们将Chatterjee等人的下限(ECCC 2019)提高到$ω(n^2)$下限$下限,用于不合理的代数分支程序。我们也是 研究对代数分支程序的影响分层对代数分支程序的影响。我们展示了一个多项式,其尺寸为$ o(n)$,但任何分层ABP的大小至少$ω(n \ sqrt {n})$。 我们在非共同环境中表现出类似的二分法,其中未释放的ABP具有$ o(n)$,并且任何分层ABP的大小至少$ω(n \ log n -log n- \ log^2 n)$。

In this paper we improve the lower bound of Chatterjee et al.\ (ECCC 2019) to an $Ω(n^2)$ lower bound for unlayered Algebraic Branching Programs. We also study the impact layerization has on Algebraic Branching Programs. We exhibit a polynomial that has an unlayered ABP of size $O(n)$ but any layered ABP has size at least $Ω(n\sqrt{n})$. We exhibit a similar dichotomy in the non-commutative setting where the unlayered ABP has size $O(n)$ and any layered ABP has size at least $Ω(n\log n -\log^2 n)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源