论文标题
爱因斯坦 - 加斯 - 邦纳特理论中的昆特空间
Kundt spacetimes in the Einstein-Gauss-Bonnet theory
论文作者
论文摘要
我们系统地研究了爱因斯坦 - 加斯 - 邦纳特重力理论中的完整类真空溶液,该理论属于非膨胀,无剪切和无曲折的几何形状(没有旋转物质术语)的昆特家族。字段方程是明确得出和简化的,其解决方案分为三个不同的亚家族。确定Weyl和RICCI曲率张量的代数结构。相应的曲率标量直接进入地球偏差方程的不变形式,使我们能够理解受EGB理论约束的引力场的特定局部物理特性。我们还提供并分析了此类真空解决方案的几个有趣的显式类别,即RICCI III型空间,所有几何形状具有恒定的横向横向空间,以及整个PP-WAVE类,承认协变量恒定的null Vector Fielt。这些精确的昆特EGB重力波在爱因斯坦的总体相对论中表现出新的特征。
We systematically investigate the complete class of vacuum solutions in the Einstein-Gauss-Bonnet gravity theory which belong to the Kundt family of non-expanding, shear-free and twist-free geometries (without gyratonic matter terms) in any dimension. The field equations are explicitly derived and simplified, and their solutions classified into three distinct subfamilies. Algebraic structures of the Weyl and Ricci curvature tensors are determined. The corresponding curvature scalars directly enter the invariant form of equation of geodesic deviation, enabling us to understand the specific local physical properties of the gravitational field constrained by the EGB theory. We also present and analyze several interesting explicit classes of such vacuum solutions, namely the Ricci type III spacetimes, all geometries with constant-curvature transverse space, and the whole pp-wave class admitting a covariantly constant null vector field. These exact Kundt EGB gravitational waves exhibit new features which are not possible in Einstein's general relativity.