论文标题

符号PBW变性标志品种; pbw tableaux和定义方程式

Symplectic PBW Degenerate Flag Varieties; PBW Tableaux and Defining Equations

论文作者

Balla, George

论文摘要

我们定义了一组PBW-SemistArd tableaux,它具有重量,该tableaux保留了两组,与Feigin-fourier-littelmann-Vinberg polytope中的整数点相对应,以提供对符号lie代数的最高权重模块。然后,我们表明这些tableaux参数化完整符号原始和pbw变性标志品种的均匀坐标环的碱基。通过这种结构,我们提供明确的退化关系,从而产生PBW归化品种的定义理想。这些关系包括A型退化Plücker关系以及我们从De Concini的线性关系中获得的一组简并线性关系。

We define a set of PBW-semistandard tableaux that is in a weight preserving bijection with the set of monomials corresponding to integral points in the Feigin-Fourier-Littelmann-Vinberg polytope for highest weight modules of the symplectic Lie algebra. We then show that these tableaux parametrize bases of the homogeneous coordinate rings of the complete symplectic original and PBW degenerate flag varieties. From this construction, we provide explicit degenerate relations that generate the defining ideal of the PBW degenerate variety. These relations consist of type A degenerate Plücker relations and a set of degenerate linear relations that we obtain from De Concini's linear relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源