论文标题
来自临床文本的ICD编码的标签注意模型
A Label Attention Model for ICD Coding from Clinical Text
论文作者
论文摘要
ICD编码是将疾病诊断代码的国际分类分配给卫生专业人员(例如临床医生)记录的临床/医疗笔记的过程。这个过程需要大量的人力资源,因此昂贵且容易出错。为了解决问题,机器学习已用于自动ICD编码。先前的最新模型是基于卷积神经网络,使用单个/几个固定窗口尺寸。但是,与临床文本中与ICD代码相关的文本片段之间的长度和相互依赖性差异很大,从而导致难以确定最佳窗口尺寸是多少。在本文中,我们为自动ICD编码提供了一个新的标签注意模型,该模型可以处理与ICD代码相关的文本片段的各个长度和相互依赖性。此外,由于大多数ICD代码不经常使用,因此导致了极度不平衡的数据问题,我们还提出了一种层次结构的关节学习机制,该机制将我们的标签注意模型扩展到了使用这些代码之间的层次结构关系来处理该问题。我们的标签注意模型在三个基准模拟数据集上实现了新的最新结果,而联合学习机制有助于改善不频繁的代码的性能。
ICD coding is a process of assigning the International Classification of Disease diagnosis codes to clinical/medical notes documented by health professionals (e.g. clinicians). This process requires significant human resources, and thus is costly and prone to error. To handle the problem, machine learning has been utilized for automatic ICD coding. Previous state-of-the-art models were based on convolutional neural networks, using a single/several fixed window sizes. However, the lengths and interdependence between text fragments related to ICD codes in clinical text vary significantly, leading to the difficulty of deciding what the best window sizes are. In this paper, we propose a new label attention model for automatic ICD coding, which can handle both the various lengths and the interdependence of the ICD code related text fragments. Furthermore, as the majority of ICD codes are not frequently used, leading to the extremely imbalanced data issue, we additionally propose a hierarchical joint learning mechanism extending our label attention model to handle the issue, using the hierarchical relationships among the codes. Our label attention model achieves new state-of-the-art results on three benchmark MIMIC datasets, and the joint learning mechanism helps improve the performances for infrequent codes.